Source code for sym.pose2

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     geo_package/CLASS.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

import math
import random
import typing as T

import numpy

from .rot2 import Rot2

# isort: split
from .ops import pose2 as ops


[docs]class Pose2(object): """ Autogenerated Python implementation of :py:class:`symforce.geo.pose2.Pose2`. Group of two-dimensional rigid body transformations - R2 x SO(2). The storage space is a complex (real, imag) for rotation followed by a position (x, y). The tangent space is one angle for rotation followed by two elements for translation in the non-rotated frame. For Lie group enthusiasts: This class is on the PRODUCT manifold. On this class, the group operations (e.g. compose and between) operate as you'd expect for a Pose or SE(2), but the manifold operations (e.g. retract and local_coordinates) operate on the product manifold SO(2) x R2. This means that: - retract(a, vec) != compose(a, from_tangent(vec)) - local_coordinates(a, b) != to_tangent(between(a, b)) - There is no hat operator, because from_tangent/to_tangent is not the matrix exp/log If you need a type that has these properties in symbolic expressions, you should use :class:`symforce.geo.unsupported.pose2_se2.Pose2_SE2`. There is no runtime equivalent of :class:`Pose2_SE2 <symforce.geo.unsupported.pose2_se2.Pose2_SE2>`, see the docstring on that class for more information. """ __slots__ = ["data"] def __repr__(self): # type: () -> str return "<{} {}>".format(self.__class__.__name__, self.data) # -------------------------------------------------------------------------- # Handwritten methods included from "custom_methods/pose2.py.jinja" # -------------------------------------------------------------------------- def __init__(self, R=None, t=None): # type: (T.Optional[Rot2], T.Union[T.Sequence[float], numpy.ndarray, None]) -> None rotation = R if R is not None else Rot2() if t is None: t = [0.0, 0.0] if isinstance(t, numpy.ndarray): if t.shape in [(2, 1), (1, 2)]: t = t.flatten() elif t.shape != (2,): raise IndexError( "Expected t to be a vector of length 2; instead had shape {}".format(t.shape) ) elif len(t) != 2: raise IndexError( "Expected t to be a sequence of length 2, was instead length {}.".format(len(t)) ) if not isinstance(rotation, Rot2): raise ValueError("arg R has type {}; type {} expected".format(type(R), Rot2)) self.data = rotation.to_storage() + list(t) @property def R(self): # type: () -> Rot2 """ Accessor for the rotation component, equivalent to self.rotation() """ return self.rotation() @property def t(self): # type: () -> numpy.ndarray """ Accessor for the position component, equivalent to self.position() """ return self.position()
[docs] def rotation(self): # type: () -> Rot2 return Rot2.from_storage(list(self.rotation_storage()))
# -------------------------------------------------------------------------- # Custom generated methods # --------------------------------------------------------------------------
[docs] def rotation_storage(self): # type: (Pose2) -> numpy.ndarray """ Returns the rotational component of this pose. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _res = numpy.zeros(2) _res[0] = _self[0] _res[1] = _self[1] return _res
[docs] def position(self): # type: (Pose2) -> numpy.ndarray """ Returns the positional component of this pose. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _res = numpy.zeros(2) _res[0] = _self[2] _res[1] = _self[3] return _res
[docs] def compose_with_point(self, right): # type: (Pose2, numpy.ndarray) -> numpy.ndarray """ Left-multiply with a compatible quantity. """ # Total ops: 8 # Input arrays _self = self.data if right.shape == (2,): right = right.reshape((2, 1)) elif right.shape != (2, 1): raise IndexError( "right is expected to have shape (2, 1) or (2,); instead had shape {}".format( right.shape ) ) # Intermediate terms (0) # Output terms _res = numpy.zeros(2) _res[0] = _self[0] * right[0, 0] - _self[1] * right[1, 0] + _self[2] _res[1] = _self[0] * right[1, 0] + _self[1] * right[0, 0] + _self[3] return _res
[docs] def inverse_compose(self, point): # type: (Pose2, numpy.ndarray) -> numpy.ndarray """ Returns ``self.inverse() * point`` This is more efficient than calling the generated inverse and compose methods separately, if doing this for one point. """ # Total ops: 14 # Input arrays _self = self.data if point.shape == (2,): point = point.reshape((2, 1)) elif point.shape != (2, 1): raise IndexError( "point is expected to have shape (2, 1) or (2,); instead had shape {}".format( point.shape ) ) # Intermediate terms (0) # Output terms _res = numpy.zeros(2) _res[0] = ( -_self[0] * _self[2] + _self[0] * point[0, 0] - _self[1] * _self[3] + _self[1] * point[1, 0] ) _res[1] = ( -_self[0] * _self[3] + _self[0] * point[1, 0] + _self[1] * _self[2] - _self[1] * point[0, 0] ) return _res
[docs] def to_homogenous_matrix(self): # type: (Pose2) -> numpy.ndarray """ A matrix representation of this element in the Euclidean space that contains it. Returns: 3x3 Matrix """ # Total ops: 1 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _res = numpy.zeros((3, 3)) _res[0, 0] = _self[0] _res[1, 0] = _self[1] _res[2, 0] = 0 _res[0, 1] = -_self[1] _res[1, 1] = _self[0] _res[2, 1] = 0 _res[0, 2] = _self[2] _res[1, 2] = _self[3] _res[2, 2] = 1 return _res
# -------------------------------------------------------------------------- # StorageOps concept # --------------------------------------------------------------------------
[docs] @staticmethod def storage_dim(): # type: () -> int return 4
[docs] def to_storage(self): # type: () -> T.List[float] return list(self.data)
[docs] @classmethod def from_storage(cls, vec): # type: (T.Sequence[float]) -> Pose2 instance = cls.__new__(cls) if isinstance(vec, list): instance.data = vec else: instance.data = list(vec) if len(vec) != cls.storage_dim(): raise ValueError( "{} has storage dim {}, got {}.".format(cls.__name__, cls.storage_dim(), len(vec)) ) return instance
# -------------------------------------------------------------------------- # GroupOps concept # --------------------------------------------------------------------------
[docs] @classmethod def identity(cls): # type: () -> Pose2 return ops.GroupOps.identity()
[docs] def inverse(self): # type: () -> Pose2 return ops.GroupOps.inverse(self)
[docs] def compose(self, b): # type: (Pose2) -> Pose2 return ops.GroupOps.compose(self, b)
[docs] def between(self, b): # type: (Pose2) -> Pose2 return ops.GroupOps.between(self, b)
# -------------------------------------------------------------------------- # LieGroupOps concept # --------------------------------------------------------------------------
[docs] @staticmethod def tangent_dim(): # type: () -> int return 3
[docs] @classmethod def from_tangent(cls, vec, epsilon=1e-8): # type: (numpy.ndarray, float) -> Pose2 if len(vec) != cls.tangent_dim(): raise ValueError( "Vector dimension ({}) not equal to tangent space dimension ({}).".format( len(vec), cls.tangent_dim() ) ) return ops.LieGroupOps.from_tangent(vec, epsilon)
[docs] def to_tangent(self, epsilon=1e-8): # type: (float) -> numpy.ndarray return ops.LieGroupOps.to_tangent(self, epsilon)
[docs] def retract(self, vec, epsilon=1e-8): # type: (numpy.ndarray, float) -> Pose2 if len(vec) != self.tangent_dim(): raise ValueError( "Vector dimension ({}) not equal to tangent space dimension ({}).".format( len(vec), self.tangent_dim() ) ) return ops.LieGroupOps.retract(self, vec, epsilon)
[docs] def local_coordinates(self, b, epsilon=1e-8): # type: (Pose2, float) -> numpy.ndarray return ops.LieGroupOps.local_coordinates(self, b, epsilon)
[docs] def interpolate(self, b, alpha, epsilon=1e-8): # type: (Pose2, float, float) -> Pose2 return ops.LieGroupOps.interpolate(self, b, alpha, epsilon)
# -------------------------------------------------------------------------- # General Helpers # -------------------------------------------------------------------------- def __eq__(self, other): # type: (T.Any) -> bool if isinstance(other, Pose2): return self.data == other.data else: return False @T.overload def __mul__(self, other): # pragma: no cover # type: (Pose2) -> Pose2 pass @T.overload def __mul__(self, other): # pragma: no cover # type: (numpy.ndarray) -> numpy.ndarray pass def __mul__(self, other): # type: (T.Union[Pose2, numpy.ndarray]) -> T.Union[Pose2, numpy.ndarray] if isinstance(other, Pose2): return self.compose(other) elif isinstance(other, numpy.ndarray) and hasattr(self, "compose_with_point"): return getattr(self, "compose_with_point")(other).reshape(other.shape) else: raise NotImplementedError("Cannot compose {} with {}.".format(type(self), type(other)))