sym.rot2 module#

class Rot2(z=None)[source]#

Bases: object

Autogenerated Python implementation of symforce.geo.rot2.Rot2.

Group of two-dimensional orthogonal matrices with determinant +1, representing rotations in 2D space. Backed by a complex number.

Parameters:

z (T.Union[T.Sequence[float], numpy.ndarray, None]) –

data: List[float]#
compose_with_point(right)[source]#

Left-multiplication. Either rotation concatenation or point transform.

Parameters:

right (Rot2) –

Return type:

ndarray

static from_angle(theta)[source]#

Create a Rot2 from an angle theta in radians

This is equivalent to from_tangent([theta])

Parameters:

theta (float) –

Return type:

Rot2

to_rotation_matrix()[source]#

A matrix representation of this element in the Euclidean space that contains it.

Return type:

ndarray

static storage_dim()[source]#
Return type:

int

to_storage()[source]#
Return type:

List[float]

classmethod from_storage(vec)[source]#
Parameters:

vec (Sequence[float]) –

Return type:

Rot2

classmethod identity()[source]#
Return type:

Rot2

inverse()[source]#
Return type:

Rot2

compose(b)[source]#
Parameters:

b (Rot2) –

Return type:

Rot2

between(b)[source]#
Parameters:

b (Rot2) –

Return type:

Rot2

static tangent_dim()[source]#
Return type:

int

classmethod from_tangent(vec, epsilon=1e-08)[source]#
Parameters:
Return type:

Rot2

to_tangent(epsilon=1e-08)[source]#
Parameters:

epsilon (float) –

Return type:

ndarray

retract(vec, epsilon=1e-08)[source]#
Parameters:
Return type:

Rot2

local_coordinates(b, epsilon=1e-08)[source]#
Parameters:
Return type:

ndarray

interpolate(b, alpha, epsilon=1e-08)[source]#
Parameters:
Return type:

Rot2