symforce.codegen.backends.python.python_config module¶
- class PythonConfig(doc_comment_line_prefix='', line_length=100, use_eigen_types=True, render_template_config=<factory>, cse_optimizations=None, zero_epsilon_behavior=<factory>, normalize_results=True, use_numba=False, reshape_vectors=True, return_2d_vectors=False)[source]¶
Bases:
CodegenConfig
Code generation config for the Python backend.
Note: Generating a function generates an empty __init__.py file in the same directory. If you have multiple functions that get generated in the same directory, it can be convenient to also generate an __init__.py file that imports all of them - you can use
symforce.codegen.backends.python.generate_module_init()
for this.- Parameters:
doc_comment_line_prefix (str) – Prefix applied to each line in a docstring
line_length (int) – Maximum allowed line length in docstrings; used for formatting docstrings.
use_eigen_types (bool) – Use eigen_lcm types for vectors instead of lists
autoformat – Run a code formatter on the generated code
custom_preamble – An optional string to be prepended on the front of the rendered template
cse_optimizations (Literal['basic'] | ~typing.Sequence[~typing.Tuple[~typing.Callable, ~typing.Callable]] | None) – Optimizations argument to pass to
sf.cse
zero_epsilon_behavior (ZeroEpsilonBehavior) – What should codegen do if a default epsilon is not set?
normalize_results (bool) – Should function outputs be explicitly projected onto the manifold before returning?
use_numba (bool) – Add the
@numba.njit
decorator to generated functions. This will greatly speed up functions by compiling them to machine code, but has large overhead on the first call and some overhead on subsequent calls, so it should not be used for small functions or functions that are only called a handful of times. It also currently requires the the inputs and outputs of the function are scalars, vectors, or matrices.reshape_vectors (bool) – Allow rank 1 ndarrays to be passed in for row and column vectors by automatically reshaping the input.
return_2d_vectors (bool) – Return all matrices as 2d ndarrays if True. If False and a matrix has either only 1 row or only 1 column, return as a 1d ndarray.
render_template_config (RenderTemplateConfig) –
- classmethod backend_name()[source]¶
String name for the backend. This should match the directory name in codegen/backends and will be used to namespace by backend in generated code.
- Return type:
- static templates_to_render(generated_file_name)[source]¶
Given a single symbolic function’s filename, provide one or more Jinja templates to render and the relative output paths where they should go.
- static printer()[source]¶
Return an instance of the code printer to use for this language.
- Return type: