Class sym::Pose3#
-
template<typename ScalarType>
class Pose3# Autogenerated C++ implementation of
symforce.geo.pose3.Pose3
.Group of three-dimensional rigid body transformations - SO(3) x R3.
The storage is a quaternion (x, y, z, w) for rotation followed by position (x, y, z).
The tangent space is 3 elements for rotation followed by 3 elements for translation in the non-rotated frame.
For Lie group enthusiasts: This class is on the PRODUCT manifold. On this class, the group operations (e.g. compose and between) operate as you’d expect for a Pose or SE(3), but the manifold operations (e.g. retract and local_coordinates) operate on the product manifold SO(3) x R3. This means that:
retract(a, vec) != compose(a, from_tangent(vec))
local_coordinates(a, b) != to_tangent(between(a, b))
There is no hat operator, because from_tangent/to_tangent is not the matrix exp/log
If you need a type that has these properties in symbolic expressions, you should use :class:
symforce.geo.unsupported.pose3_se3.Pose3_SE3
. There is no runtime equivalent of :class:Pose3_SE3 <symforce.geo.unsupported.pose3_se3.Pose3_SE3>
, see the docstring on that class for more information.Public Types
-
using Scalar = ScalarType#
Public Functions
-
inline explicit Pose3(const DataVec &data, const bool normalize = true)#
Construct from data vec
- Parameters:
normalize – Project to the manifold on construction. This ensures numerical stability as this constructor is called after each codegen operation. Constructing from a normalized vector may be faster, e.g. with
FromStorage
.
-
inline Pose3()#
-
template<typename Derived>
inline Pose3(const Rot3<Scalar> &rotation, const Eigen::MatrixBase<Derived> &position)#
-
const Eigen::Matrix<Scalar, 4, 1> RotationStorage() const#
Returns the rotational component of this pose.
-
const Vector3 ComposeWithPoint(const Vector3 &right) const#
Left-multiply with a compatible quantity.
-
const Vector3 InverseCompose(const Vector3 &point) const#
Returns
self.inverse() * point
This is more efficient than calling the generated inverse and compose methods separately, if doing this for one point.
-
const Eigen::Matrix<Scalar, 4, 4> ToHomogenousMatrix() const#
4x4 matrix representing this pose transform.
-
inline Self InverseWithJacobian(SelfJacobian *const res_D_a = nullptr) const#
-
inline Self ComposeWithJacobians(const Self &b, SelfJacobian *const res_D_a = nullptr, SelfJacobian *const res_D_b = nullptr) const#
-
inline Self BetweenWithJacobians(const Self &b, SelfJacobian *const res_D_a = nullptr, SelfJacobian *const res_D_b = nullptr) const#
-
inline TangentVec ToTangent(const Scalar epsilon = kDefaultEpsilon<Scalar>) const#
-
inline Self Retract(const TangentVec &vec, const Scalar epsilon = kDefaultEpsilon<Scalar>) const#
-
inline TangentVec LocalCoordinates(const Self &b, const Scalar epsilon = kDefaultEpsilon<Scalar>) const#
Public Static Functions
-
static inline constexpr int32_t StorageDim()#
-
static inline constexpr int32_t TangentDim()#
-
static inline Self FromTangent(const TangentVec &vec, const Scalar epsilon = kDefaultEpsilon<Scalar>)#