Class sym::SparseCholeskySolver¶
-
template<typename _MatrixType, int _UpLo = Eigen::Lower>
class SparseCholeskySolver¶ Efficiently solves
A * x = b
, where A is a sparse matrix and b is a dense vector or matrix, using the LDLT cholesky factorizationA = L * D * L^T
, where L is a unit triangular matrix and D is a diagonal matrix.When repeatedly solving systems where A changes but its sparsity pattern remains identical, this class can analyze the sparsity pattern once and use it to more efficiently factorize and solve on subsequent calls.
Public Types
-
using MatrixType = _MatrixType¶
-
using Scalar = typename MatrixType::Scalar¶
-
using StorageIndex = typename MatrixType::StorageIndex¶
-
using CholMatrixType = Eigen::SparseMatrix<Scalar, Eigen::ColMajor, StorageIndex>¶
-
using PermutationMatrixType = Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, StorageIndex>¶
-
using Ordering = std::function<void(const MatrixType&, PermutationMatrixType&)>¶
Public Functions
-
inline SparseCholeskySolver(const Ordering &ordering = Eigen::MetisOrdering<StorageIndex>())¶
Default constructor
- Parameters:
ordering – Functor to compute the variable ordering to use. Can be any functor with signature void(const MatrixType&, PermutationMatrixType&) which takes in the sparsity pattern of the matrix A and fills out the permutation of variables to use in the second argument. The first argument is the full matrix A, not just the upper or lower triangle; the values may not be the same as in A, but will be nonzero for entries in A that are nonzero. Typically this will be an instance of one of the orderings provided by Eigen, such as Eigen::NaturalOrdering().
-
inline explicit SparseCholeskySolver(const MatrixType &A, const Ordering &ordering = Eigen::MetisOrdering<StorageIndex>())¶
Construct with a representative sparse matrix
- Parameters:
A – The matrix to be factorized
ordering – Functor to compute the variable ordering to use. Can be any functor with signature void(const MatrixType&, PermutationMatrixType&) which takes in the sparsity pattern of the matrix A and fills out the permutation of variables to use in the second argument. The first argument is the full matrix A, not just the upper or lower triangle; the values may not be the same as in A, but will be nonzero for entries in A that are nonzero. Typically this will be an instance of one of the orderings provided by Eigen, such as Eigen::NaturalOrdering().
-
inline ~SparseCholeskySolver()¶
-
inline bool IsInitialized() const¶
Whether we have computed a symbolic sparsity and are ready to factorize/solve.
-
void ComputePermutationMatrix(const MatrixType &A)¶
Compute an efficient permutation matrix (ordering) for A and store internally.
-
void ComputeSymbolicSparsity(const MatrixType &A)¶
Compute symbolic sparsity pattern for A and store internally.
-
bool Factorize(const MatrixType &A)¶
Decompose A into A = L * D * L^T and store internally. A must have the same sparsity as the matrix used for construction. Returns true if factorization was successful, and false otherwise. NOTE(brad): Currently always returns true.
-
template<typename Rhs>
RhsType Solve(const Eigen::MatrixBase<Rhs> &b) const¶ Returns x for A x = b, where x and b are dense.
-
template<typename Rhs>
void SolveInPlace(Eigen::MatrixBase<Rhs> &b) const¶ Solves in place for x in A x = b, where x and b are dense.
-
inline const CholMatrixType &L() const¶
-
inline const VectorType &D() const¶
-
inline const PermutationMatrixType &Permutation() const¶
-
inline const PermutationMatrixType &InversePermutation() const¶
-
using MatrixType = _MatrixType¶