File double_sphere_camera_cal.h#
-
namespace sym
Typedefs
-
using DoubleSphereCameraCald = DoubleSphereCameraCal<double>#
-
using DoubleSphereCameraCalf = DoubleSphereCameraCal<float>#
-
template<typename ScalarType>
class DoubleSphereCameraCal# - #include <double_sphere_camera_cal.h>
Autogenerated C++ implementation of
symforce.cam.double_sphere_camera_cal.DoubleSphereCameraCal
.Camera model where a point is consecutively projected onto two unit spheres with centers shifted by
xi
, then projected into the image plane using the pinhole model shifted byalpha / (1 - alpha)
.There are important differences here from the derivation in the paper and in other open-source packages with double sphere models; see notebooks/double_sphere_derivation.ipynb for more information.
The storage for this class is:
[ fx fy cx cy xi alpha ]
TODO(aaron): Create double_sphere_derivation.ipynb
TODO(aaron): Probably want to check that values and derivatives are correct (or at least sane) on the valid side of the is_valid boundary
Reference: https://vision.in.tum.de/research/vslam/double-sphere
Public Functions
-
inline DoubleSphereCameraCal(const Eigen::Matrix<Scalar, 2, 1> &focal_length, const Eigen::Matrix<Scalar, 2, 1> &principal_point, const Scalar xi, const Scalar alpha)#
-
inline explicit DoubleSphereCameraCal(const DataVec &data, bool normalize = true)#
Construct from data vec
- Parameters:
normalize – Project to the manifold on construction. This ensures numerical stability as this constructor is called after each codegen operation. Constructing from a normalized vector may be faster, e.g. with
FromStorage
.
-
Eigen::Matrix<Scalar, 2, 1> PixelFromCameraPoint(const Eigen::Matrix<Scalar, 3, 1> &point, const Scalar epsilon, Scalar *const is_valid = nullptr) const#
Project a 3D point in the camera frame into 2D pixel coordinates.
Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0
-
Eigen::Matrix<Scalar, 2, 1> PixelFromCameraPointWithJacobians(const Eigen::Matrix<Scalar, 3, 1> &point, const Scalar epsilon, Scalar *const is_valid = nullptr, Eigen::Matrix<Scalar, 2, 6> *const pixel_D_cal = nullptr, Eigen::Matrix<Scalar, 2, 3> *const pixel_D_point = nullptr) const#
Project a 3D point in the camera frame into 2D pixel coordinates.
Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 pixel_D_cal: Derivative of pixel with respect to intrinsic calibration parameters pixel_D_point: Derivative of pixel with respect to point
-
Eigen::Matrix<Scalar, 3, 1> CameraRayFromPixel(const Eigen::Matrix<Scalar, 2, 1> &pixel, const Scalar epsilon, Scalar *const is_valid = nullptr) const#
Backproject a 2D pixel coordinate into a 3D ray in the camera frame.
Returns: camera_ray: The ray in the camera frame (NOT normalized) is_valid: 1 if the operation is within bounds else 0
-
Eigen::Matrix<Scalar, 3, 1> CameraRayFromPixelWithJacobians(const Eigen::Matrix<Scalar, 2, 1> &pixel, const Scalar epsilon, Scalar *const is_valid = nullptr, Eigen::Matrix<Scalar, 3, 6> *const point_D_cal = nullptr, Eigen::Matrix<Scalar, 3, 2> *const point_D_pixel = nullptr) const#
Backproject a 2D pixel coordinate into a 3D ray in the camera frame.
Returns: camera_ray: The ray in the camera frame (NOT normalized) is_valid: 1 if the operation is within bounds else 0 point_D_cal: Derivative of point with respect to intrinsic calibration parameters point_D_pixel: Derivation of point with respect to pixel
-
template<typename ToScalar>
inline DoubleSphereCameraCal<ToScalar> Cast() const#
-
inline bool operator==(const DoubleSphereCameraCal &rhs) const#
Public Static Functions
-
static inline constexpr int32_t StorageDim()#
-
static inline DoubleSphereCameraCal FromStorage(const Scalar *const vec)#
-
inline DoubleSphereCameraCal(const Eigen::Matrix<Scalar, 2, 1> &focal_length, const Eigen::Matrix<Scalar, 2, 1> &principal_point, const Scalar xi, const Scalar alpha)#
-
using DoubleSphereCameraCald = DoubleSphereCameraCal<double>#