$\displaystyle \left[\begin{matrix}- 2 \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right)^{2} \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)^{2} - 2 \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right)^{2} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)^{2} + 1 & \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right) \left(2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{4 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right) \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right) - 2 \cdot \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right) \left(\frac{2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \sin{\left(\theta \right)}}{2 \sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)} + 2 \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)} + \left(\frac{\sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)}}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2} + \frac{1}{2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right) & 2 \cdot \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right) \left(\frac{2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \sin{\left(\theta \right)}}{2 \sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)} + 2 \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)} + \left(\frac{\sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)}}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2} + \frac{1}{2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)\right) \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right) + \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right) \left(2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{4 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\\\left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right) \left(2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{4 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right) \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right) + 2 \cdot \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right) \left(\frac{2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \sin{\left(\theta \right)}}{2 \sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)} + 2 \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)} + \left(\frac{\sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)}}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2} + \frac{1}{2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right) & - 2 \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right)^{2} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)^{2} - 2 \left(\left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{2 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right)^{2} + 1 & 2 \cdot \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right) \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right) \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right) - \left(2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{4 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right) \left(\frac{2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \sin{\left(\theta \right)}}{2 \sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)} + 2 \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)} + \left(\frac{\sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)}}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2} + \frac{1}{2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)\right)\\- 2 \cdot \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right) \left(\frac{2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \sin{\left(\theta \right)}}{2 \sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)} + 2 \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)} + \left(\frac{\sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)}}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2} + \frac{1}{2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)\right) \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right) + \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right) \left(2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{4 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right) & 2 \cdot \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right) \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)}{2}\right) \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right) + \left(2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{4 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right) \left(\frac{2 \cdot \left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \sin{\left(\theta \right)}}{2 \sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)} + 2 \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)} + \left(\frac{\sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)}}{2} - \frac{\min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2} + \frac{1}{2}\right) \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)\right) & - 2 \left(\frac{1}{2} - \frac{\min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)}{2}\right)^{2} \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)^{2} - 2 \left(\left(1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right) \left(\frac{\sqrt{\max\left(0, 2 - 2 \cos{\left(\theta \right)}\right)}}{2} + \frac{\max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)}{2}\right) + \frac{2 \sin{\left(\theta \right)} \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right)}{2 \sqrt{\max\left(0, 2 \cos{\left(\theta \right)} + 2\right)} - 2 \min\left(1 - \max\left(0, \operatorname{sign}{\left(- 2 \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right), \max\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right), \min\left(1 - \max\left(0, 1 - \max\left(0, \operatorname{sign}{\left(\max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 1.1 \right)}\right)\right), 1 - \max\left(0, \operatorname{sign}{\left(- \cos{\left(\theta \right)} + \max\left(1, 2 \cos{\left(\theta \right)} + 1, \cos{\left(\theta \right)}\right) - 0.1 \right)}\right)\right)\right)\right)\right)\right)\right) + 2}\right)^{2} + 1\end{matrix}\right]$