Source code for sym.ops.linear_camera_cal.lie_group_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     ops/CLASS/lie_group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

import math
import typing as T

import numpy

import sym


[docs]class LieGroupOps(object): """ Python LieGroupOps implementation for :py:class:`symforce.cam.linear_camera_cal.LinearCameraCal`. """
[docs] @staticmethod def from_tangent(vec, epsilon): # type: (numpy.ndarray, float) -> sym.LinearCameraCal # Total ops: 0 # Input arrays if vec.shape == (4,): vec = vec.reshape((4, 1)) elif vec.shape != (4, 1): raise IndexError( "vec is expected to have shape (4, 1) or (4,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = vec[0, 0] _res[1] = vec[1, 0] _res[2] = vec[2, 0] _res[3] = vec[3, 0] return sym.LinearCameraCal.from_storage(_res)
[docs] @staticmethod def to_tangent(a, epsilon): # type: (sym.LinearCameraCal, float) -> numpy.ndarray # Total ops: 0 # Input arrays _a = a.data # Intermediate terms (0) # Output terms _res = numpy.zeros(4) _res[0] = _a[0] _res[1] = _a[1] _res[2] = _a[2] _res[3] = _a[3] return _res
[docs] @staticmethod def retract(a, vec, epsilon): # type: (sym.LinearCameraCal, numpy.ndarray, float) -> sym.LinearCameraCal # Total ops: 4 # Input arrays _a = a.data if vec.shape == (4,): vec = vec.reshape((4, 1)) elif vec.shape != (4, 1): raise IndexError( "vec is expected to have shape (4, 1) or (4,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = _a[0] + vec[0, 0] _res[1] = _a[1] + vec[1, 0] _res[2] = _a[2] + vec[2, 0] _res[3] = _a[3] + vec[3, 0] return sym.LinearCameraCal.from_storage(_res)
[docs] @staticmethod def local_coordinates(a, b, epsilon): # type: (sym.LinearCameraCal, sym.LinearCameraCal, float) -> numpy.ndarray # Total ops: 4 # Input arrays _a = a.data _b = b.data # Intermediate terms (0) # Output terms _res = numpy.zeros(4) _res[0] = -_a[0] + _b[0] _res[1] = -_a[1] + _b[1] _res[2] = -_a[2] + _b[2] _res[3] = -_a[3] + _b[3] return _res
[docs] @staticmethod def interpolate(a, b, alpha, epsilon): # type: (sym.LinearCameraCal, sym.LinearCameraCal, float, float) -> sym.LinearCameraCal # Total ops: 12 # Input arrays _a = a.data _b = b.data # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = _a[0] + alpha * (-_a[0] + _b[0]) _res[1] = _a[1] + alpha * (-_a[1] + _b[1]) _res[2] = _a[2] + alpha * (-_a[2] + _b[2]) _res[3] = _a[3] + alpha * (-_a[3] + _b[3]) return sym.LinearCameraCal.from_storage(_res)