Source code for sym.ops.polynomial_camera_cal.lie_group_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     ops/CLASS/lie_group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

import math
import typing as T

import numpy

import sym


[docs]class LieGroupOps(object): """ Python LieGroupOps implementation for :py:class:`symforce.cam.polynomial_camera_cal.PolynomialCameraCal`. """
[docs] @staticmethod def from_tangent(vec, epsilon): # type: (numpy.ndarray, float) -> sym.PolynomialCameraCal # Total ops: 0 # Input arrays if vec.shape == (8,): vec = vec.reshape((8, 1)) elif vec.shape != (8, 1): raise IndexError( "vec is expected to have shape (8, 1) or (8,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (0) # Output terms _res = [0.0] * 8 _res[0] = vec[0, 0] _res[1] = vec[1, 0] _res[2] = vec[2, 0] _res[3] = vec[3, 0] _res[4] = vec[4, 0] _res[5] = vec[5, 0] _res[6] = vec[6, 0] _res[7] = vec[7, 0] return sym.PolynomialCameraCal.from_storage(_res)
[docs] @staticmethod def to_tangent(a, epsilon): # type: (sym.PolynomialCameraCal, float) -> numpy.ndarray # Total ops: 0 # Input arrays _a = a.data # Intermediate terms (0) # Output terms _res = numpy.zeros(8) _res[0] = _a[0] _res[1] = _a[1] _res[2] = _a[2] _res[3] = _a[3] _res[4] = _a[4] _res[5] = _a[5] _res[6] = _a[6] _res[7] = _a[7] return _res
[docs] @staticmethod def retract(a, vec, epsilon): # type: (sym.PolynomialCameraCal, numpy.ndarray, float) -> sym.PolynomialCameraCal # Total ops: 8 # Input arrays _a = a.data if vec.shape == (8,): vec = vec.reshape((8, 1)) elif vec.shape != (8, 1): raise IndexError( "vec is expected to have shape (8, 1) or (8,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (0) # Output terms _res = [0.0] * 8 _res[0] = _a[0] + vec[0, 0] _res[1] = _a[1] + vec[1, 0] _res[2] = _a[2] + vec[2, 0] _res[3] = _a[3] + vec[3, 0] _res[4] = _a[4] + vec[4, 0] _res[5] = _a[5] + vec[5, 0] _res[6] = _a[6] + vec[6, 0] _res[7] = _a[7] + vec[7, 0] return sym.PolynomialCameraCal.from_storage(_res)
[docs] @staticmethod def local_coordinates(a, b, epsilon): # type: (sym.PolynomialCameraCal, sym.PolynomialCameraCal, float) -> numpy.ndarray # Total ops: 8 # Input arrays _a = a.data _b = b.data # Intermediate terms (0) # Output terms _res = numpy.zeros(8) _res[0] = -_a[0] + _b[0] _res[1] = -_a[1] + _b[1] _res[2] = -_a[2] + _b[2] _res[3] = -_a[3] + _b[3] _res[4] = -_a[4] + _b[4] _res[5] = -_a[5] + _b[5] _res[6] = -_a[6] + _b[6] _res[7] = -_a[7] + _b[7] return _res
[docs] @staticmethod def interpolate(a, b, alpha, epsilon): # type: (sym.PolynomialCameraCal, sym.PolynomialCameraCal, float, float) -> sym.PolynomialCameraCal # Total ops: 24 # Input arrays _a = a.data _b = b.data # Intermediate terms (0) # Output terms _res = [0.0] * 8 _res[0] = _a[0] + alpha * (-_a[0] + _b[0]) _res[1] = _a[1] + alpha * (-_a[1] + _b[1]) _res[2] = _a[2] + alpha * (-_a[2] + _b[2]) _res[3] = _a[3] + alpha * (-_a[3] + _b[3]) _res[4] = _a[4] + alpha * (-_a[4] + _b[4]) _res[5] = _a[5] + alpha * (-_a[5] + _b[5]) _res[6] = _a[6] + alpha * (-_a[6] + _b[6]) _res[7] = _a[7] + alpha * (-_a[7] + _b[7]) return sym.PolynomialCameraCal.from_storage(_res)