Source code for sym.ops.pose2.lie_group_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     ops/CLASS/lie_group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

from __future__ import annotations

import math
import typing as T

import numpy

import sym


[docs]class LieGroupOps(object): """ Python LieGroupOps implementation for :py:class:`symforce.geo.pose2.Pose2`. """
[docs] @staticmethod def from_tangent(vec: numpy.ndarray, epsilon: float) -> sym.Pose2: # Total ops: 2 # Input arrays if vec.shape == (3,): vec = vec.reshape((3, 1)) elif vec.shape != (3, 1): raise IndexError( "vec is expected to have shape (3, 1) or (3,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (0) # Output terms _res = sym.Pose2.from_storage( [math.cos(vec[0, 0]), math.sin(vec[0, 0]), vec[1, 0], vec[2, 0]] ) return _res
[docs] @staticmethod def to_tangent(a: sym.Pose2, epsilon: float) -> numpy.ndarray: # Total ops: 3 # Input arrays _a = a.data # Intermediate terms (0) # Output terms _res = numpy.zeros(3) _res[0] = math.atan2(_a[1], _a[0] + math.copysign(epsilon, _a[0])) _res[1] = _a[2] _res[2] = _a[3] return _res
[docs] @staticmethod def retract(a: sym.Pose2, vec: numpy.ndarray, epsilon: float) -> sym.Pose2: # Total ops: 10 # Input arrays _a = a.data if vec.shape == (3,): vec = vec.reshape((3, 1)) elif vec.shape != (3, 1): raise IndexError( "vec is expected to have shape (3, 1) or (3,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (2) _tmp0 = math.sin(vec[0, 0]) _tmp1 = math.cos(vec[0, 0]) # Output terms _res = sym.Pose2.from_storage( [ _a[0] * _tmp1 - _a[1] * _tmp0, _a[0] * _tmp0 + _a[1] * _tmp1, _a[2] + vec[1, 0], _a[3] + vec[2, 0], ] ) return _res
[docs] @staticmethod def local_coordinates(a: sym.Pose2, b: sym.Pose2, epsilon: float) -> numpy.ndarray: # Total ops: 11 # Input arrays _a = a.data _b = b.data # Intermediate terms (1) _tmp0 = _a[0] * _b[0] + _a[1] * _b[1] # Output terms _res = numpy.zeros(3) _res[0] = math.atan2(_a[0] * _b[1] - _a[1] * _b[0], _tmp0 + math.copysign(epsilon, _tmp0)) _res[1] = -_a[2] + _b[2] _res[2] = -_a[3] + _b[3] return _res
[docs] @staticmethod def interpolate(a: sym.Pose2, b: sym.Pose2, alpha: float, epsilon: float) -> sym.Pose2: # Total ops: 24 # Input arrays _a = a.data _b = b.data # Intermediate terms (4) _tmp0 = _a[0] * _b[0] + _a[1] * _b[1] _tmp1 = alpha * math.atan2( _a[0] * _b[1] - _a[1] * _b[0], _tmp0 + math.copysign(epsilon, _tmp0) ) _tmp2 = math.sin(_tmp1) _tmp3 = math.cos(_tmp1) # Output terms _res = sym.Pose2.from_storage( [ _a[0] * _tmp3 - _a[1] * _tmp2, _a[0] * _tmp2 + _a[1] * _tmp3, _a[2] + alpha * (-_a[2] + _b[2]), _a[3] + alpha * (-_a[3] + _b[3]), ] ) return _res