Source code for sym.ops.rot2.lie_group_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     ops/CLASS/lie_group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

import math
import typing as T

import numpy

import sym


[docs]class LieGroupOps(object): """ Python LieGroupOps implementation for :py:class:`symforce.geo.rot2.Rot2`. """
[docs] @staticmethod def from_tangent(vec, epsilon): # type: (numpy.ndarray, float) -> sym.Rot2 # Total ops: 2 # Input arrays if vec.shape == (1,): vec = vec.reshape((1, 1)) elif vec.shape != (1, 1): raise IndexError( "vec is expected to have shape (1, 1) or (1,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (0) # Output terms _res = [0.0] * 2 _res[0] = math.cos(vec[0, 0]) _res[1] = math.sin(vec[0, 0]) return sym.Rot2.from_storage(_res)
[docs] @staticmethod def to_tangent(a, epsilon): # type: (sym.Rot2, float) -> numpy.ndarray # Total ops: 5 # Input arrays _a = a.data # Intermediate terms (0) # Output terms _res = numpy.zeros(1) _res[0] = math.atan2( _a[1], _a[0] + epsilon * ((0.0 if _a[0] == 0 else math.copysign(1, _a[0])) + 0.5) ) return _res
[docs] @staticmethod def retract(a, vec, epsilon): # type: (sym.Rot2, numpy.ndarray, float) -> sym.Rot2 # Total ops: 8 # Input arrays _a = a.data if vec.shape == (1,): vec = vec.reshape((1, 1)) elif vec.shape != (1, 1): raise IndexError( "vec is expected to have shape (1, 1) or (1,); instead had shape {}".format( vec.shape ) ) # Intermediate terms (2) _tmp0 = math.cos(vec[0, 0]) _tmp1 = math.sin(vec[0, 0]) # Output terms _res = [0.0] * 2 _res[0] = _a[0] * _tmp0 - _a[1] * _tmp1 _res[1] = _a[0] * _tmp1 + _a[1] * _tmp0 return sym.Rot2.from_storage(_res)
[docs] @staticmethod def local_coordinates(a, b, epsilon): # type: (sym.Rot2, sym.Rot2, float) -> numpy.ndarray # Total ops: 11 # Input arrays _a = a.data _b = b.data # Intermediate terms (1) _tmp0 = _a[0] * _b[0] + _a[1] * _b[1] # Output terms _res = numpy.zeros(1) _res[0] = math.atan2( _a[0] * _b[1] - _a[1] * _b[0], _tmp0 + epsilon * ((0.0 if _tmp0 == 0 else math.copysign(1, _tmp0)) + 0.5), ) return _res
[docs] @staticmethod def interpolate(a, b, alpha, epsilon): # type: (sym.Rot2, sym.Rot2, float, float) -> sym.Rot2 # Total ops: 20 # Input arrays _a = a.data _b = b.data # Intermediate terms (4) _tmp0 = _a[0] * _b[0] + _a[1] * _b[1] _tmp1 = alpha * math.atan2( _a[0] * _b[1] - _a[1] * _b[0], _tmp0 + epsilon * ((0.0 if _tmp0 == 0 else math.copysign(1, _tmp0)) + 0.5), ) _tmp2 = math.cos(_tmp1) _tmp3 = math.sin(_tmp1) # Output terms _res = [0.0] * 2 _res[0] = _a[0] * _tmp2 - _a[1] * _tmp3 _res[1] = _a[0] * _tmp3 + _a[1] * _tmp2 return sym.Rot2.from_storage(_res)