# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
# ops/CLASS/lie_group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------
import math
import typing as T
import numpy
import sym # pylint: disable=useless-suppression,unused-import
[docs]class LieGroupOps(object):
"""
Python LieGroupOps implementation for :py:class:`symforce.geo.rot2.Rot2`.
"""
[docs] @staticmethod
def from_tangent(vec, epsilon):
# type: (numpy.ndarray, float) -> sym.Rot2
# Total ops: 2
# Input arrays
if vec.shape == (1,):
vec = vec.reshape((1, 1))
elif vec.shape != (1, 1):
raise IndexError(
"vec is expected to have shape (1, 1) or (1,); instead had shape {}".format(
vec.shape
)
)
# Intermediate terms (0)
# Output terms
_res = [0.0] * 2
_res[0] = math.cos(vec[0, 0])
_res[1] = math.sin(vec[0, 0])
return sym.Rot2.from_storage(_res)
[docs] @staticmethod
def to_tangent(a, epsilon):
# type: (sym.Rot2, float) -> numpy.ndarray
# Total ops: 5
# Input arrays
_a = a.data
# Intermediate terms (0)
# Output terms
_res = numpy.zeros(1)
_res[0] = math.atan2(
_a[1], _a[0] + epsilon * ((0.0 if _a[0] == 0 else math.copysign(1, _a[0])) + 0.5)
)
return _res
[docs] @staticmethod
def retract(a, vec, epsilon):
# type: (sym.Rot2, numpy.ndarray, float) -> sym.Rot2
# Total ops: 8
# Input arrays
_a = a.data
if vec.shape == (1,):
vec = vec.reshape((1, 1))
elif vec.shape != (1, 1):
raise IndexError(
"vec is expected to have shape (1, 1) or (1,); instead had shape {}".format(
vec.shape
)
)
# Intermediate terms (2)
_tmp0 = math.sin(vec[0, 0])
_tmp1 = math.cos(vec[0, 0])
# Output terms
_res = [0.0] * 2
_res[0] = _a[0] * _tmp1 - _a[1] * _tmp0
_res[1] = _a[0] * _tmp0 + _a[1] * _tmp1
return sym.Rot2.from_storage(_res)
[docs] @staticmethod
def local_coordinates(a, b, epsilon):
# type: (sym.Rot2, sym.Rot2, float) -> numpy.ndarray
# Total ops: 11
# Input arrays
_a = a.data
_b = b.data
# Intermediate terms (1)
_tmp0 = _a[0] * _b[0] + _a[1] * _b[1]
# Output terms
_res = numpy.zeros(1)
_res[0] = math.atan2(
_a[0] * _b[1] - _a[1] * _b[0],
_tmp0 + epsilon * ((0.0 if _tmp0 == 0 else math.copysign(1, _tmp0)) + 0.5),
)
return _res
[docs] @staticmethod
def interpolate(a, b, alpha, epsilon):
# type: (sym.Rot2, sym.Rot2, float, float) -> sym.Rot2
# Total ops: 20
# Input arrays
_a = a.data
_b = b.data
# Intermediate terms (4)
_tmp0 = _a[0] * _b[0] + _a[1] * _b[1]
_tmp1 = alpha * math.atan2(
_a[0] * _b[1] - _a[1] * _b[0],
_tmp0 + epsilon * ((0.0 if _tmp0 == 0 else math.copysign(1, _tmp0)) + 0.5),
)
_tmp2 = math.cos(_tmp1)
_tmp3 = math.sin(_tmp1)
# Output terms
_res = [0.0] * 2
_res[0] = _a[0] * _tmp2 - _a[1] * _tmp3
_res[1] = _a[0] * _tmp3 + _a[1] * _tmp2
return sym.Rot2.from_storage(_res)