# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
# ops/CLASS/group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------
# ruff: noqa: PLR0915, F401, PLW0211, PLR0914
import math
import typing as T
import numpy
import sym
[docs]class GroupOps(object):
"""
Python GroupOps implementation for :py:class:`symforce.geo.rot3.Rot3`.
"""
[docs] @staticmethod
def identity():
# type: () -> sym.Rot3
# Total ops: 0
# Input arrays
# Intermediate terms (0)
# Output terms
_res = [0.0] * 4
_res[0] = 0
_res[1] = 0
_res[2] = 0
_res[3] = 1
return sym.Rot3.from_storage(_res)
[docs] @staticmethod
def inverse(a):
# type: (sym.Rot3) -> sym.Rot3
# Total ops: 3
# Input arrays
_a = a.data
# Intermediate terms (0)
# Output terms
_res = [0.0] * 4
_res[0] = -_a[0]
_res[1] = -_a[1]
_res[2] = -_a[2]
_res[3] = _a[3]
return sym.Rot3.from_storage(_res)
[docs] @staticmethod
def compose(a, b):
# type: (sym.Rot3, sym.Rot3) -> sym.Rot3
# Total ops: 28
# Input arrays
_a = a.data
_b = b.data
# Intermediate terms (0)
# Output terms
_res = [0.0] * 4
_res[0] = _a[0] * _b[3] + _a[1] * _b[2] - _a[2] * _b[1] + _a[3] * _b[0]
_res[1] = -_a[0] * _b[2] + _a[1] * _b[3] + _a[2] * _b[0] + _a[3] * _b[1]
_res[2] = _a[0] * _b[1] - _a[1] * _b[0] + _a[2] * _b[3] + _a[3] * _b[2]
_res[3] = -_a[0] * _b[0] - _a[1] * _b[1] - _a[2] * _b[2] + _a[3] * _b[3]
return sym.Rot3.from_storage(_res)
[docs] @staticmethod
def between(a, b):
# type: (sym.Rot3, sym.Rot3) -> sym.Rot3
# Total ops: 28
# Input arrays
_a = a.data
_b = b.data
# Intermediate terms (0)
# Output terms
_res = [0.0] * 4
_res[0] = -_a[0] * _b[3] - _a[1] * _b[2] + _a[2] * _b[1] + _a[3] * _b[0]
_res[1] = _a[0] * _b[2] - _a[1] * _b[3] - _a[2] * _b[0] + _a[3] * _b[1]
_res[2] = -_a[0] * _b[1] + _a[1] * _b[0] - _a[2] * _b[3] + _a[3] * _b[2]
_res[3] = _a[0] * _b[0] + _a[1] * _b[1] + _a[2] * _b[2] + _a[3] * _b[3]
return sym.Rot3.from_storage(_res)
[docs] @staticmethod
def inverse_with_jacobian(a):
# type: (sym.Rot3) -> T.Tuple[sym.Rot3, numpy.ndarray]
# Total ops: 34
# Input arrays
_a = a.data
# Intermediate terms (13)
_tmp0 = _a[2] ** 2
_tmp1 = _a[0] ** 2
_tmp2 = -(_a[3] ** 2)
_tmp3 = _a[1] ** 2
_tmp4 = _tmp2 + _tmp3
_tmp5 = 2 * _a[2]
_tmp6 = _a[3] * _tmp5
_tmp7 = -2 * _a[0] * _a[1]
_tmp8 = 2 * _a[3]
_tmp9 = _a[1] * _tmp8
_tmp10 = -_a[0] * _tmp5
_tmp11 = _a[0] * _tmp8
_tmp12 = -_a[1] * _tmp5
# Output terms
_res = [0.0] * 4
_res[0] = -_a[0]
_res[1] = -_a[1]
_res[2] = -_a[2]
_res[3] = _a[3]
_res_D_a = numpy.zeros((3, 3))
_res_D_a[0, 0] = _tmp0 - _tmp1 + _tmp4
_res_D_a[1, 0] = -_tmp6 + _tmp7
_res_D_a[2, 0] = _tmp10 + _tmp9
_res_D_a[0, 1] = _tmp6 + _tmp7
_res_D_a[1, 1] = _tmp0 + _tmp1 + _tmp2 - _tmp3
_res_D_a[2, 1] = -_tmp11 + _tmp12
_res_D_a[0, 2] = _tmp10 - _tmp9
_res_D_a[1, 2] = _tmp11 + _tmp12
_res_D_a[2, 2] = -_tmp0 + _tmp1 + _tmp4
return sym.Rot3.from_storage(_res), _res_D_a
[docs] @staticmethod
def compose_with_jacobians(a, b):
# type: (sym.Rot3, sym.Rot3) -> T.Tuple[sym.Rot3, numpy.ndarray, numpy.ndarray]
# Total ops: 224
# Input arrays
_a = a.data
_b = b.data
# Intermediate terms (94)
_tmp0 = _a[3] * _b[0]
_tmp1 = _a[2] * _b[1]
_tmp2 = _a[0] * _b[3]
_tmp3 = _a[1] * _b[2]
_tmp4 = _tmp0 - _tmp1 + _tmp2 + _tmp3
_tmp5 = _a[3] * _b[1]
_tmp6 = _a[2] * _b[0]
_tmp7 = _a[0] * _b[2]
_tmp8 = _a[1] * _b[3]
_tmp9 = _tmp5 + _tmp6 - _tmp7 + _tmp8
_tmp10 = _a[3] * _b[2]
_tmp11 = _a[2] * _b[3]
_tmp12 = _a[0] * _b[1]
_tmp13 = _a[1] * _b[0]
_tmp14 = _tmp10 + _tmp11 + _tmp12 - _tmp13
_tmp15 = _a[3] * _b[3]
_tmp16 = _a[2] * _b[2]
_tmp17 = _a[0] * _b[0]
_tmp18 = _a[1] * _b[1]
_tmp19 = _tmp15 - _tmp16 - _tmp17 - _tmp18
_tmp20 = (1.0 / 2.0) * _tmp13
_tmp21 = -_tmp20
_tmp22 = (1.0 / 2.0) * _tmp11
_tmp23 = _tmp21 + _tmp22
_tmp24 = (1.0 / 2.0) * _tmp10
_tmp25 = -_tmp24
_tmp26 = (1.0 / 2.0) * _tmp12
_tmp27 = -_tmp26
_tmp28 = _tmp25 + _tmp27
_tmp29 = _tmp23 + _tmp28
_tmp30 = 2 * _tmp14
_tmp31 = (1.0 / 2.0) * _tmp3
_tmp32 = (1.0 / 2.0) * _tmp0
_tmp33 = -_tmp32
_tmp34 = (1.0 / 2.0) * _tmp1
_tmp35 = -_tmp34
_tmp36 = (1.0 / 2.0) * _tmp2
_tmp37 = -_tmp36
_tmp38 = _tmp35 + _tmp37
_tmp39 = _tmp31 + _tmp33 + _tmp38
_tmp40 = 2 * _tmp4
_tmp41 = (1.0 / 2.0) * _tmp5
_tmp42 = (1.0 / 2.0) * _tmp6
_tmp43 = -_tmp42
_tmp44 = (1.0 / 2.0) * _tmp7
_tmp45 = -_tmp44
_tmp46 = (1.0 / 2.0) * _tmp8
_tmp47 = -_tmp46
_tmp48 = _tmp45 + _tmp47
_tmp49 = _tmp41 + _tmp43 + _tmp48
_tmp50 = 2 * _tmp9
_tmp51 = (1.0 / 2.0) * _tmp17
_tmp52 = -_tmp51
_tmp53 = (1.0 / 2.0) * _tmp16
_tmp54 = (1.0 / 2.0) * _tmp15
_tmp55 = (1.0 / 2.0) * _tmp18
_tmp56 = _tmp54 + _tmp55
_tmp57 = _tmp52 + _tmp53 + _tmp56
_tmp58 = 2 * _tmp19
_tmp59 = _tmp54 - _tmp55
_tmp60 = _tmp51 + _tmp53 + _tmp59
_tmp61 = -_tmp41
_tmp62 = _tmp42 + _tmp48 + _tmp61
_tmp63 = _tmp35 + _tmp36
_tmp64 = -_tmp31
_tmp65 = _tmp33 + _tmp64
_tmp66 = _tmp63 + _tmp65
_tmp67 = -_tmp22
_tmp68 = _tmp21 + _tmp67
_tmp69 = _tmp24 + _tmp27 + _tmp68
_tmp70 = _tmp32 + _tmp38 + _tmp64
_tmp71 = _tmp25 + _tmp26 + _tmp68
_tmp72 = -_tmp53
_tmp73 = _tmp51 + _tmp56 + _tmp72
_tmp74 = _tmp45 + _tmp46
_tmp75 = _tmp43 + _tmp61
_tmp76 = _tmp74 + _tmp75
_tmp77 = _tmp23 + _tmp24 + _tmp26
_tmp78 = _tmp44 + _tmp47 + _tmp75
_tmp79 = -_tmp50 * _tmp78
_tmp80 = _tmp34 + _tmp37 + _tmp65
_tmp81 = _tmp52 + _tmp59 + _tmp72
_tmp82 = _tmp58 * _tmp81
_tmp83 = -_tmp40 * _tmp80 + _tmp82
_tmp84 = _tmp30 * _tmp81
_tmp85 = _tmp40 * _tmp78
_tmp86 = _tmp30 * _tmp80
_tmp87 = _tmp50 * _tmp81
_tmp88 = _tmp31 + _tmp32 + _tmp63
_tmp89 = _tmp20 + _tmp28 + _tmp67
_tmp90 = -_tmp30 * _tmp89
_tmp91 = _tmp40 * _tmp81
_tmp92 = _tmp50 * _tmp89
_tmp93 = _tmp41 + _tmp42 + _tmp74
# Output terms
_res = [0.0] * 4
_res[0] = _tmp4
_res[1] = _tmp9
_res[2] = _tmp14
_res[3] = _tmp19
_res_D_a = numpy.zeros((3, 3))
_res_D_a[0, 0] = _tmp29 * _tmp30 - _tmp39 * _tmp40 - _tmp49 * _tmp50 + _tmp57 * _tmp58
_res_D_a[1, 0] = _tmp29 * _tmp58 - _tmp30 * _tmp57 - _tmp39 * _tmp50 + _tmp40 * _tmp49
_res_D_a[2, 0] = -_tmp29 * _tmp40 - _tmp30 * _tmp39 + _tmp49 * _tmp58 + _tmp50 * _tmp57
_res_D_a[0, 1] = _tmp30 * _tmp60 - _tmp40 * _tmp62 - _tmp50 * _tmp66 + _tmp58 * _tmp69
_res_D_a[1, 1] = -_tmp30 * _tmp69 + _tmp40 * _tmp66 - _tmp50 * _tmp62 + _tmp58 * _tmp60
_res_D_a[2, 1] = -_tmp30 * _tmp62 - _tmp40 * _tmp60 + _tmp50 * _tmp69 + _tmp58 * _tmp66
_res_D_a[0, 2] = _tmp30 * _tmp70 - _tmp40 * _tmp71 - _tmp50 * _tmp73 + _tmp58 * _tmp76
_res_D_a[1, 2] = -_tmp30 * _tmp76 + _tmp40 * _tmp73 - _tmp50 * _tmp71 + _tmp58 * _tmp70
_res_D_a[2, 2] = -_tmp30 * _tmp71 - _tmp40 * _tmp70 + _tmp50 * _tmp76 + _tmp58 * _tmp73
_res_D_b = numpy.zeros((3, 3))
_res_D_b[0, 0] = _tmp30 * _tmp77 + _tmp79 + _tmp83
_res_D_b[1, 0] = -_tmp50 * _tmp80 + _tmp58 * _tmp77 - _tmp84 + _tmp85
_res_D_b[2, 0] = -_tmp40 * _tmp77 + _tmp58 * _tmp78 - _tmp86 + _tmp87
_res_D_b[0, 1] = -_tmp50 * _tmp88 + _tmp58 * _tmp89 + _tmp84 - _tmp85
_res_D_b[1, 1] = _tmp40 * _tmp88 + _tmp79 + _tmp82 + _tmp90
_res_D_b[2, 1] = -_tmp30 * _tmp78 + _tmp58 * _tmp88 - _tmp91 + _tmp92
_res_D_b[0, 2] = -_tmp40 * _tmp89 + _tmp58 * _tmp93 + _tmp86 - _tmp87
_res_D_b[1, 2] = -_tmp30 * _tmp93 + _tmp58 * _tmp80 + _tmp91 - _tmp92
_res_D_b[2, 2] = _tmp50 * _tmp93 + _tmp83 + _tmp90
return sym.Rot3.from_storage(_res), _res_D_a, _res_D_b
[docs] @staticmethod
def between_with_jacobians(a, b):
# type: (sym.Rot3, sym.Rot3) -> T.Tuple[sym.Rot3, numpy.ndarray, numpy.ndarray]
# Total ops: 161
# Input arrays
_a = a.data
_b = b.data
# Intermediate terms (78)
_tmp0 = _a[3] * _b[0]
_tmp1 = _a[2] * _b[1]
_tmp2 = _a[0] * _b[3]
_tmp3 = _a[1] * _b[2]
_tmp4 = _tmp0 + _tmp1 - _tmp2 - _tmp3
_tmp5 = _a[3] * _b[1]
_tmp6 = _a[2] * _b[0]
_tmp7 = _a[0] * _b[2]
_tmp8 = _a[1] * _b[3]
_tmp9 = _tmp5 - _tmp6 + _tmp7 - _tmp8
_tmp10 = _a[3] * _b[2]
_tmp11 = _a[2] * _b[3]
_tmp12 = _a[0] * _b[1]
_tmp13 = _a[1] * _b[0]
_tmp14 = _tmp10 - _tmp11 - _tmp12 + _tmp13
_tmp15 = _a[3] * _b[3]
_tmp16 = _a[2] * _b[2]
_tmp17 = _a[0] * _b[0]
_tmp18 = _a[1] * _b[1]
_tmp19 = _tmp15 + _tmp16 + _tmp17 + _tmp18
_tmp20 = (1.0 / 2.0) * _tmp15
_tmp21 = (1.0 / 2.0) * _tmp16
_tmp22 = (1.0 / 2.0) * _tmp17
_tmp23 = (1.0 / 2.0) * _tmp18
_tmp24 = -_tmp20 - _tmp21 - _tmp22 - _tmp23
_tmp25 = 2 * _tmp19
_tmp26 = _tmp24 * _tmp25
_tmp27 = (1.0 / 2.0) * _tmp0
_tmp28 = (1.0 / 2.0) * _tmp1
_tmp29 = (1.0 / 2.0) * _tmp2
_tmp30 = (1.0 / 2.0) * _tmp3
_tmp31 = _tmp27 + _tmp28 - _tmp29 - _tmp30
_tmp32 = 2 * _tmp4
_tmp33 = _tmp31 * _tmp32
_tmp34 = (1.0 / 2.0) * _tmp10
_tmp35 = (1.0 / 2.0) * _tmp11
_tmp36 = (1.0 / 2.0) * _tmp12
_tmp37 = (1.0 / 2.0) * _tmp13
_tmp38 = _tmp34 - _tmp35 - _tmp36 + _tmp37
_tmp39 = 2 * _tmp14
_tmp40 = _tmp38 * _tmp39
_tmp41 = (1.0 / 2.0) * _tmp5
_tmp42 = (1.0 / 2.0) * _tmp6
_tmp43 = (1.0 / 2.0) * _tmp7
_tmp44 = (1.0 / 2.0) * _tmp8
_tmp45 = -_tmp41 + _tmp42 - _tmp43 + _tmp44
_tmp46 = 2 * _tmp9
_tmp47 = -_tmp45 * _tmp46
_tmp48 = _tmp40 + _tmp47
_tmp49 = -_tmp31 * _tmp46
_tmp50 = 2 * _tmp24
_tmp51 = _tmp14 * _tmp50
_tmp52 = _tmp32 * _tmp45
_tmp53 = _tmp25 * _tmp38 + _tmp52
_tmp54 = _tmp50 * _tmp9
_tmp55 = -_tmp32 * _tmp38
_tmp56 = _tmp25 * _tmp45 + _tmp55
_tmp57 = _tmp41 - _tmp42 + _tmp43 - _tmp44
_tmp58 = -2 * _tmp34 + 2 * _tmp35 + 2 * _tmp36 - 2 * _tmp37
_tmp59 = _tmp19 * _tmp58 + _tmp49
_tmp60 = _tmp46 * _tmp57
_tmp61 = -_tmp14 * _tmp58
_tmp62 = _tmp33 + _tmp61
_tmp63 = -_tmp39 * _tmp57
_tmp64 = _tmp4 * _tmp50
_tmp65 = _tmp58 * _tmp9
_tmp66 = _tmp25 * _tmp31 + _tmp65
_tmp67 = -_tmp27 - _tmp28 + _tmp29 + _tmp30
_tmp68 = _tmp39 * _tmp67
_tmp69 = _tmp25 * _tmp57 + _tmp68
_tmp70 = _tmp25 * _tmp67 + _tmp63
_tmp71 = -_tmp32 * _tmp67
_tmp72 = _tmp20 + _tmp21 + _tmp22 + _tmp23
_tmp73 = _tmp25 * _tmp72
_tmp74 = _tmp71 + _tmp73
_tmp75 = _tmp39 * _tmp72
_tmp76 = _tmp46 * _tmp72
_tmp77 = _tmp32 * _tmp72
# Output terms
_res = [0.0] * 4
_res[0] = _tmp4
_res[1] = _tmp9
_res[2] = _tmp14
_res[3] = _tmp19
_res_D_a = numpy.zeros((3, 3))
_res_D_a[0, 0] = _tmp26 - _tmp33 + _tmp48
_res_D_a[1, 0] = _tmp49 - _tmp51 + _tmp53
_res_D_a[2, 0] = -_tmp31 * _tmp39 + _tmp54 + _tmp56
_res_D_a[0, 1] = -_tmp32 * _tmp57 + _tmp51 + _tmp59
_res_D_a[1, 1] = _tmp26 - _tmp60 + _tmp62
_res_D_a[2, 1] = _tmp63 - _tmp64 + _tmp66
_res_D_a[0, 2] = -_tmp54 + _tmp55 + _tmp69
_res_D_a[1, 2] = -_tmp38 * _tmp46 + _tmp64 + _tmp70
_res_D_a[2, 2] = _tmp26 - _tmp40 + _tmp60 + _tmp71
_res_D_b = numpy.zeros((3, 3))
_res_D_b[0, 0] = _tmp48 + _tmp74
_res_D_b[1, 0] = -_tmp46 * _tmp67 + _tmp53 - _tmp75
_res_D_b[2, 0] = _tmp56 - _tmp68 + _tmp76
_res_D_b[0, 1] = -_tmp52 + _tmp59 + _tmp75
_res_D_b[1, 1] = _tmp47 + _tmp62 + _tmp73
_res_D_b[2, 1] = -_tmp39 * _tmp45 + _tmp66 - _tmp77
_res_D_b[0, 2] = -_tmp4 * _tmp58 + _tmp69 - _tmp76
_res_D_b[1, 2] = -_tmp65 + _tmp70 + _tmp77
_res_D_b[2, 2] = _tmp60 + _tmp61 + _tmp74
return sym.Rot3.from_storage(_res), _res_D_a, _res_D_b