Source code for sym.ops.rot3.group_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     ops/CLASS/group_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

import math
import typing as T

import numpy

import sym


[docs]class GroupOps(object): """ Python GroupOps implementation for :py:class:`symforce.geo.rot3.Rot3`. """
[docs] @staticmethod def identity(): # type: () -> sym.Rot3 # Total ops: 0 # Input arrays # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = 0 _res[1] = 0 _res[2] = 0 _res[3] = 1 return sym.Rot3.from_storage(_res)
[docs] @staticmethod def inverse(a): # type: (sym.Rot3) -> sym.Rot3 # Total ops: 3 # Input arrays _a = a.data # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = -_a[0] _res[1] = -_a[1] _res[2] = -_a[2] _res[3] = _a[3] return sym.Rot3.from_storage(_res)
[docs] @staticmethod def compose(a, b): # type: (sym.Rot3, sym.Rot3) -> sym.Rot3 # Total ops: 28 # Input arrays _a = a.data _b = b.data # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = _a[0] * _b[3] + _a[1] * _b[2] - _a[2] * _b[1] + _a[3] * _b[0] _res[1] = -_a[0] * _b[2] + _a[1] * _b[3] + _a[2] * _b[0] + _a[3] * _b[1] _res[2] = _a[0] * _b[1] - _a[1] * _b[0] + _a[2] * _b[3] + _a[3] * _b[2] _res[3] = -_a[0] * _b[0] - _a[1] * _b[1] - _a[2] * _b[2] + _a[3] * _b[3] return sym.Rot3.from_storage(_res)
[docs] @staticmethod def between(a, b): # type: (sym.Rot3, sym.Rot3) -> sym.Rot3 # Total ops: 28 # Input arrays _a = a.data _b = b.data # Intermediate terms (0) # Output terms _res = [0.0] * 4 _res[0] = -_a[0] * _b[3] - _a[1] * _b[2] + _a[2] * _b[1] + _a[3] * _b[0] _res[1] = _a[0] * _b[2] - _a[1] * _b[3] - _a[2] * _b[0] + _a[3] * _b[1] _res[2] = -_a[0] * _b[1] + _a[1] * _b[0] - _a[2] * _b[3] + _a[3] * _b[2] _res[3] = _a[0] * _b[0] + _a[1] * _b[1] + _a[2] * _b[2] + _a[3] * _b[3] return sym.Rot3.from_storage(_res)
[docs] @staticmethod def inverse_with_jacobian(a): # type: (sym.Rot3) -> T.Tuple[sym.Rot3, numpy.ndarray] # Total ops: 34 # Input arrays _a = a.data # Intermediate terms (13) _tmp0 = _a[2] ** 2 _tmp1 = _a[0] ** 2 _tmp2 = -(_a[3] ** 2) _tmp3 = _a[1] ** 2 _tmp4 = _tmp2 + _tmp3 _tmp5 = 2 * _a[2] _tmp6 = _a[3] * _tmp5 _tmp7 = -2 * _a[0] * _a[1] _tmp8 = 2 * _a[3] _tmp9 = _a[1] * _tmp8 _tmp10 = -_a[0] * _tmp5 _tmp11 = _a[0] * _tmp8 _tmp12 = -_a[1] * _tmp5 # Output terms _res = [0.0] * 4 _res[0] = -_a[0] _res[1] = -_a[1] _res[2] = -_a[2] _res[3] = _a[3] _res_D_a = numpy.zeros((3, 3)) _res_D_a[0, 0] = _tmp0 - _tmp1 + _tmp4 _res_D_a[1, 0] = -_tmp6 + _tmp7 _res_D_a[2, 0] = _tmp10 + _tmp9 _res_D_a[0, 1] = _tmp6 + _tmp7 _res_D_a[1, 1] = _tmp0 + _tmp1 + _tmp2 - _tmp3 _res_D_a[2, 1] = -_tmp11 + _tmp12 _res_D_a[0, 2] = _tmp10 - _tmp9 _res_D_a[1, 2] = _tmp11 + _tmp12 _res_D_a[2, 2] = -_tmp0 + _tmp1 + _tmp4 return sym.Rot3.from_storage(_res), _res_D_a
[docs] @staticmethod def compose_with_jacobians(a, b): # type: (sym.Rot3, sym.Rot3) -> T.Tuple[sym.Rot3, numpy.ndarray, numpy.ndarray] # Total ops: 224 # Input arrays _a = a.data _b = b.data # Intermediate terms (94) _tmp0 = _a[3] * _b[0] _tmp1 = _a[2] * _b[1] _tmp2 = _a[0] * _b[3] _tmp3 = _a[1] * _b[2] _tmp4 = _tmp0 - _tmp1 + _tmp2 + _tmp3 _tmp5 = _a[3] * _b[1] _tmp6 = _a[2] * _b[0] _tmp7 = _a[0] * _b[2] _tmp8 = _a[1] * _b[3] _tmp9 = _tmp5 + _tmp6 - _tmp7 + _tmp8 _tmp10 = _a[3] * _b[2] _tmp11 = _a[2] * _b[3] _tmp12 = _a[0] * _b[1] _tmp13 = _a[1] * _b[0] _tmp14 = _tmp10 + _tmp11 + _tmp12 - _tmp13 _tmp15 = _a[3] * _b[3] _tmp16 = _a[2] * _b[2] _tmp17 = _a[0] * _b[0] _tmp18 = _a[1] * _b[1] _tmp19 = _tmp15 - _tmp16 - _tmp17 - _tmp18 _tmp20 = (1.0 / 2.0) * _tmp13 _tmp21 = -_tmp20 _tmp22 = (1.0 / 2.0) * _tmp11 _tmp23 = _tmp21 + _tmp22 _tmp24 = (1.0 / 2.0) * _tmp10 _tmp25 = -_tmp24 _tmp26 = (1.0 / 2.0) * _tmp12 _tmp27 = -_tmp26 _tmp28 = _tmp25 + _tmp27 _tmp29 = _tmp23 + _tmp28 _tmp30 = 2 * _tmp14 _tmp31 = (1.0 / 2.0) * _tmp3 _tmp32 = (1.0 / 2.0) * _tmp0 _tmp33 = -_tmp32 _tmp34 = (1.0 / 2.0) * _tmp1 _tmp35 = -_tmp34 _tmp36 = (1.0 / 2.0) * _tmp2 _tmp37 = -_tmp36 _tmp38 = _tmp35 + _tmp37 _tmp39 = _tmp31 + _tmp33 + _tmp38 _tmp40 = 2 * _tmp4 _tmp41 = (1.0 / 2.0) * _tmp5 _tmp42 = (1.0 / 2.0) * _tmp6 _tmp43 = -_tmp42 _tmp44 = (1.0 / 2.0) * _tmp7 _tmp45 = -_tmp44 _tmp46 = (1.0 / 2.0) * _tmp8 _tmp47 = -_tmp46 _tmp48 = _tmp45 + _tmp47 _tmp49 = _tmp41 + _tmp43 + _tmp48 _tmp50 = 2 * _tmp9 _tmp51 = (1.0 / 2.0) * _tmp17 _tmp52 = -_tmp51 _tmp53 = (1.0 / 2.0) * _tmp16 _tmp54 = (1.0 / 2.0) * _tmp15 _tmp55 = (1.0 / 2.0) * _tmp18 _tmp56 = _tmp54 + _tmp55 _tmp57 = _tmp52 + _tmp53 + _tmp56 _tmp58 = 2 * _tmp19 _tmp59 = _tmp54 - _tmp55 _tmp60 = _tmp51 + _tmp53 + _tmp59 _tmp61 = -_tmp41 _tmp62 = _tmp42 + _tmp48 + _tmp61 _tmp63 = _tmp35 + _tmp36 _tmp64 = -_tmp31 _tmp65 = _tmp33 + _tmp64 _tmp66 = _tmp63 + _tmp65 _tmp67 = -_tmp22 _tmp68 = _tmp21 + _tmp67 _tmp69 = _tmp24 + _tmp27 + _tmp68 _tmp70 = _tmp32 + _tmp38 + _tmp64 _tmp71 = _tmp25 + _tmp26 + _tmp68 _tmp72 = -_tmp53 _tmp73 = _tmp51 + _tmp56 + _tmp72 _tmp74 = _tmp45 + _tmp46 _tmp75 = _tmp43 + _tmp61 _tmp76 = _tmp74 + _tmp75 _tmp77 = _tmp23 + _tmp24 + _tmp26 _tmp78 = _tmp44 + _tmp47 + _tmp75 _tmp79 = -_tmp50 * _tmp78 _tmp80 = _tmp34 + _tmp37 + _tmp65 _tmp81 = _tmp52 + _tmp59 + _tmp72 _tmp82 = _tmp58 * _tmp81 _tmp83 = -_tmp40 * _tmp80 + _tmp82 _tmp84 = _tmp30 * _tmp81 _tmp85 = _tmp40 * _tmp78 _tmp86 = _tmp30 * _tmp80 _tmp87 = _tmp50 * _tmp81 _tmp88 = _tmp31 + _tmp32 + _tmp63 _tmp89 = _tmp20 + _tmp28 + _tmp67 _tmp90 = -_tmp30 * _tmp89 _tmp91 = _tmp40 * _tmp81 _tmp92 = _tmp50 * _tmp89 _tmp93 = _tmp41 + _tmp42 + _tmp74 # Output terms _res = [0.0] * 4 _res[0] = _tmp4 _res[1] = _tmp9 _res[2] = _tmp14 _res[3] = _tmp19 _res_D_a = numpy.zeros((3, 3)) _res_D_a[0, 0] = _tmp29 * _tmp30 - _tmp39 * _tmp40 - _tmp49 * _tmp50 + _tmp57 * _tmp58 _res_D_a[1, 0] = _tmp29 * _tmp58 - _tmp30 * _tmp57 - _tmp39 * _tmp50 + _tmp40 * _tmp49 _res_D_a[2, 0] = -_tmp29 * _tmp40 - _tmp30 * _tmp39 + _tmp49 * _tmp58 + _tmp50 * _tmp57 _res_D_a[0, 1] = _tmp30 * _tmp60 - _tmp40 * _tmp62 - _tmp50 * _tmp66 + _tmp58 * _tmp69 _res_D_a[1, 1] = -_tmp30 * _tmp69 + _tmp40 * _tmp66 - _tmp50 * _tmp62 + _tmp58 * _tmp60 _res_D_a[2, 1] = -_tmp30 * _tmp62 - _tmp40 * _tmp60 + _tmp50 * _tmp69 + _tmp58 * _tmp66 _res_D_a[0, 2] = _tmp30 * _tmp70 - _tmp40 * _tmp71 - _tmp50 * _tmp73 + _tmp58 * _tmp76 _res_D_a[1, 2] = -_tmp30 * _tmp76 + _tmp40 * _tmp73 - _tmp50 * _tmp71 + _tmp58 * _tmp70 _res_D_a[2, 2] = -_tmp30 * _tmp71 - _tmp40 * _tmp70 + _tmp50 * _tmp76 + _tmp58 * _tmp73 _res_D_b = numpy.zeros((3, 3)) _res_D_b[0, 0] = _tmp30 * _tmp77 + _tmp79 + _tmp83 _res_D_b[1, 0] = -_tmp50 * _tmp80 + _tmp58 * _tmp77 - _tmp84 + _tmp85 _res_D_b[2, 0] = -_tmp40 * _tmp77 + _tmp58 * _tmp78 - _tmp86 + _tmp87 _res_D_b[0, 1] = -_tmp50 * _tmp88 + _tmp58 * _tmp89 + _tmp84 - _tmp85 _res_D_b[1, 1] = _tmp40 * _tmp88 + _tmp79 + _tmp82 + _tmp90 _res_D_b[2, 1] = -_tmp30 * _tmp78 + _tmp58 * _tmp88 - _tmp91 + _tmp92 _res_D_b[0, 2] = -_tmp40 * _tmp89 + _tmp58 * _tmp93 + _tmp86 - _tmp87 _res_D_b[1, 2] = -_tmp30 * _tmp93 + _tmp58 * _tmp80 + _tmp91 - _tmp92 _res_D_b[2, 2] = _tmp50 * _tmp93 + _tmp83 + _tmp90 return sym.Rot3.from_storage(_res), _res_D_a, _res_D_b
[docs] @staticmethod def between_with_jacobians(a, b): # type: (sym.Rot3, sym.Rot3) -> T.Tuple[sym.Rot3, numpy.ndarray, numpy.ndarray] # Total ops: 161 # Input arrays _a = a.data _b = b.data # Intermediate terms (78) _tmp0 = _a[3] * _b[0] _tmp1 = _a[2] * _b[1] _tmp2 = _a[0] * _b[3] _tmp3 = _a[1] * _b[2] _tmp4 = _tmp0 + _tmp1 - _tmp2 - _tmp3 _tmp5 = _a[3] * _b[1] _tmp6 = _a[2] * _b[0] _tmp7 = _a[0] * _b[2] _tmp8 = _a[1] * _b[3] _tmp9 = _tmp5 - _tmp6 + _tmp7 - _tmp8 _tmp10 = _a[3] * _b[2] _tmp11 = _a[2] * _b[3] _tmp12 = _a[0] * _b[1] _tmp13 = _a[1] * _b[0] _tmp14 = _tmp10 - _tmp11 - _tmp12 + _tmp13 _tmp15 = _a[3] * _b[3] _tmp16 = _a[2] * _b[2] _tmp17 = _a[0] * _b[0] _tmp18 = _a[1] * _b[1] _tmp19 = _tmp15 + _tmp16 + _tmp17 + _tmp18 _tmp20 = (1.0 / 2.0) * _tmp15 _tmp21 = (1.0 / 2.0) * _tmp16 _tmp22 = (1.0 / 2.0) * _tmp17 _tmp23 = (1.0 / 2.0) * _tmp18 _tmp24 = -_tmp20 - _tmp21 - _tmp22 - _tmp23 _tmp25 = 2 * _tmp19 _tmp26 = _tmp24 * _tmp25 _tmp27 = (1.0 / 2.0) * _tmp0 _tmp28 = (1.0 / 2.0) * _tmp1 _tmp29 = (1.0 / 2.0) * _tmp2 _tmp30 = (1.0 / 2.0) * _tmp3 _tmp31 = _tmp27 + _tmp28 - _tmp29 - _tmp30 _tmp32 = 2 * _tmp4 _tmp33 = _tmp31 * _tmp32 _tmp34 = (1.0 / 2.0) * _tmp10 _tmp35 = (1.0 / 2.0) * _tmp11 _tmp36 = (1.0 / 2.0) * _tmp12 _tmp37 = (1.0 / 2.0) * _tmp13 _tmp38 = _tmp34 - _tmp35 - _tmp36 + _tmp37 _tmp39 = 2 * _tmp14 _tmp40 = _tmp38 * _tmp39 _tmp41 = (1.0 / 2.0) * _tmp5 _tmp42 = (1.0 / 2.0) * _tmp6 _tmp43 = (1.0 / 2.0) * _tmp7 _tmp44 = (1.0 / 2.0) * _tmp8 _tmp45 = -_tmp41 + _tmp42 - _tmp43 + _tmp44 _tmp46 = 2 * _tmp9 _tmp47 = -_tmp45 * _tmp46 _tmp48 = _tmp40 + _tmp47 _tmp49 = -_tmp31 * _tmp46 _tmp50 = 2 * _tmp24 _tmp51 = _tmp14 * _tmp50 _tmp52 = _tmp32 * _tmp45 _tmp53 = _tmp25 * _tmp38 + _tmp52 _tmp54 = _tmp50 * _tmp9 _tmp55 = -_tmp32 * _tmp38 _tmp56 = _tmp25 * _tmp45 + _tmp55 _tmp57 = _tmp41 - _tmp42 + _tmp43 - _tmp44 _tmp58 = -2 * _tmp34 + 2 * _tmp35 + 2 * _tmp36 - 2 * _tmp37 _tmp59 = _tmp19 * _tmp58 + _tmp49 _tmp60 = _tmp46 * _tmp57 _tmp61 = -_tmp14 * _tmp58 _tmp62 = _tmp33 + _tmp61 _tmp63 = -_tmp39 * _tmp57 _tmp64 = _tmp4 * _tmp50 _tmp65 = _tmp58 * _tmp9 _tmp66 = _tmp25 * _tmp31 + _tmp65 _tmp67 = -_tmp27 - _tmp28 + _tmp29 + _tmp30 _tmp68 = _tmp39 * _tmp67 _tmp69 = _tmp25 * _tmp57 + _tmp68 _tmp70 = _tmp25 * _tmp67 + _tmp63 _tmp71 = -_tmp32 * _tmp67 _tmp72 = _tmp20 + _tmp21 + _tmp22 + _tmp23 _tmp73 = _tmp25 * _tmp72 _tmp74 = _tmp71 + _tmp73 _tmp75 = _tmp39 * _tmp72 _tmp76 = _tmp46 * _tmp72 _tmp77 = _tmp32 * _tmp72 # Output terms _res = [0.0] * 4 _res[0] = _tmp4 _res[1] = _tmp9 _res[2] = _tmp14 _res[3] = _tmp19 _res_D_a = numpy.zeros((3, 3)) _res_D_a[0, 0] = _tmp26 - _tmp33 + _tmp48 _res_D_a[1, 0] = _tmp49 - _tmp51 + _tmp53 _res_D_a[2, 0] = -_tmp31 * _tmp39 + _tmp54 + _tmp56 _res_D_a[0, 1] = -_tmp32 * _tmp57 + _tmp51 + _tmp59 _res_D_a[1, 1] = _tmp26 - _tmp60 + _tmp62 _res_D_a[2, 1] = _tmp63 - _tmp64 + _tmp66 _res_D_a[0, 2] = -_tmp54 + _tmp55 + _tmp69 _res_D_a[1, 2] = -_tmp38 * _tmp46 + _tmp64 + _tmp70 _res_D_a[2, 2] = _tmp26 - _tmp40 + _tmp60 + _tmp71 _res_D_b = numpy.zeros((3, 3)) _res_D_b[0, 0] = _tmp48 + _tmp74 _res_D_b[1, 0] = -_tmp46 * _tmp67 + _tmp53 - _tmp75 _res_D_b[2, 0] = _tmp56 - _tmp68 + _tmp76 _res_D_b[0, 1] = -_tmp52 + _tmp59 + _tmp75 _res_D_b[1, 1] = _tmp47 + _tmp62 + _tmp73 _res_D_b[2, 1] = -_tmp39 * _tmp45 + _tmp66 - _tmp77 _res_D_b[0, 2] = -_tmp4 * _tmp58 + _tmp69 - _tmp76 _res_D_b[1, 2] = -_tmp65 + _tmp70 + _tmp77 _res_D_b[2, 2] = _tmp60 + _tmp61 + _tmp74 return sym.Rot3.from_storage(_res), _res_D_a, _res_D_b