Source code for sym.ops.spherical_camera_cal.camera_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     cam_package/ops/CLASS/camera_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

import math
import typing as T

import numpy

import sym  # pylint: disable=useless-suppression,unused-import


[docs]class CameraOps(object): """ Python CameraOps implementation for :py:class:`symforce.cam.spherical_camera_cal.SphericalCameraCal`. """
[docs] @staticmethod def focal_length(self): # type: (sym.SphericalCameraCal) -> numpy.ndarray """ Return the focal length. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _focal_length = numpy.zeros(2) _focal_length[0] = _self[0] _focal_length[1] = _self[1] return _focal_length
[docs] @staticmethod def principal_point(self): # type: (sym.SphericalCameraCal) -> numpy.ndarray """ Return the principal point. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _principal_point = numpy.zeros(2) _principal_point[0] = _self[2] _principal_point[1] = _self[3] return _principal_point
[docs] @staticmethod def pixel_from_camera_point(self, point, epsilon): # type: (sym.SphericalCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 """ # Total ops: 30 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (4) _tmp0 = math.sqrt(epsilon + point[0, 0] ** 2 + point[1, 0] ** 2) _tmp1 = math.atan2(_tmp0, point[2, 0]) _tmp2 = min(_tmp1, _self[4] - epsilon) _tmp3 = ( _self[5] * _tmp2**3 + _self[6] * _tmp2**5 + _self[7] * _tmp2**7 + _self[8] * _tmp2**9 + _tmp2 ) / _tmp0 # Output terms _pixel = numpy.zeros(2) _pixel[0] = _self[0] * _tmp3 * point[0, 0] + _self[2] _pixel[1] = _self[1] * _tmp3 * point[1, 0] + _self[3] _is_valid = max(0, (0.0 if _self[4] - _tmp1 == 0 else math.copysign(1, _self[4] - _tmp1))) return _pixel, _is_valid
[docs] @staticmethod def pixel_from_camera_point_with_jacobians(self, point, epsilon): # type: (sym.SphericalCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float, numpy.ndarray, numpy.ndarray] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 pixel_D_cal: Derivative of pixel with respect to intrinsic calibration parameters pixel_D_point: Derivative of pixel with respect to point """ # Total ops: 129 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (40) _tmp0 = -epsilon _tmp1 = point[1, 0] ** 2 _tmp2 = point[0, 0] ** 2 _tmp3 = _tmp1 + _tmp2 + epsilon _tmp4 = math.sqrt(_tmp3) _tmp5 = math.atan2(_tmp4, point[2, 0]) _tmp6 = min(_tmp5, _self[4] + _tmp0) _tmp7 = _tmp6**5 _tmp8 = _tmp6**7 _tmp9 = _tmp6**9 _tmp10 = _tmp6**3 _tmp11 = _self[5] * _tmp10 + _self[6] * _tmp7 + _self[7] * _tmp8 + _self[8] * _tmp9 + _tmp6 _tmp12 = 1 / _tmp4 _tmp13 = _tmp11 * _tmp12 _tmp14 = _tmp13 * point[0, 0] _tmp15 = _tmp13 * point[1, 0] _tmp16 = _self[4] - _tmp5 _tmp17 = _self[0] * point[0, 0] _tmp18 = _tmp12 * _tmp17 _tmp19 = _self[1] * point[1, 0] _tmp20 = _tmp12 * _tmp19 _tmp21 = _tmp12 * _tmp9 _tmp22 = (9.0 / 2.0) * _self[8] * _tmp6**8 _tmp23 = ((0.0 if _tmp0 + _tmp16 == 0 else math.copysign(1, _tmp0 + _tmp16)) + 1) / ( _tmp3 + point[2, 0] ** 2 ) _tmp24 = _tmp12 * point[2, 0] _tmp25 = _tmp23 * _tmp24 _tmp26 = _tmp22 * _tmp25 _tmp27 = (5.0 / 2.0) * _self[6] * _tmp6**4 _tmp28 = _tmp25 * _tmp27 _tmp29 = (7.0 / 2.0) * _self[7] * _tmp6**6 _tmp30 = _tmp25 * _tmp29 _tmp31 = (3.0 / 2.0) * _self[5] * _tmp6**2 _tmp32 = _tmp25 * _tmp31 _tmp33 = (1.0 / 2.0) * _tmp23 _tmp34 = _tmp24 * _tmp33 _tmp35 = ( _tmp26 * point[0, 0] + _tmp28 * point[0, 0] + _tmp30 * point[0, 0] + _tmp32 * point[0, 0] + _tmp34 * point[0, 0] ) _tmp36 = _tmp11 / _tmp3 ** (3.0 / 2.0) _tmp37 = ( _tmp26 * point[1, 0] + _tmp28 * point[1, 0] + _tmp30 * point[1, 0] + _tmp32 * point[1, 0] + _tmp34 * point[1, 0] ) _tmp38 = _tmp23 * _tmp4 _tmp39 = _tmp12 * ( -_tmp22 * _tmp38 - _tmp27 * _tmp38 - _tmp29 * _tmp38 - _tmp31 * _tmp38 - _tmp33 * _tmp4 ) # Output terms _pixel = numpy.zeros(2) _pixel[0] = _self[0] * _tmp14 + _self[2] _pixel[1] = _self[1] * _tmp15 + _self[3] _is_valid = max(0, (0.0 if _tmp16 == 0 else math.copysign(1, _tmp16))) _pixel_D_cal = numpy.zeros((2, 8)) _pixel_D_cal[0, 0] = _tmp14 _pixel_D_cal[1, 0] = 0 _pixel_D_cal[0, 1] = 0 _pixel_D_cal[1, 1] = _tmp15 _pixel_D_cal[0, 2] = 1 _pixel_D_cal[1, 2] = 0 _pixel_D_cal[0, 3] = 0 _pixel_D_cal[1, 3] = 1 _pixel_D_cal[0, 4] = _tmp10 * _tmp18 _pixel_D_cal[1, 4] = _tmp10 * _tmp20 _pixel_D_cal[0, 5] = _tmp18 * _tmp7 _pixel_D_cal[1, 5] = _tmp20 * _tmp7 _pixel_D_cal[0, 6] = _tmp18 * _tmp8 _pixel_D_cal[1, 6] = _tmp20 * _tmp8 _pixel_D_cal[0, 7] = _tmp17 * _tmp21 _pixel_D_cal[1, 7] = _tmp19 * _tmp21 _pixel_D_point = numpy.zeros((2, 3)) _pixel_D_point[0, 0] = _self[0] * _tmp13 - _self[0] * _tmp2 * _tmp36 + _tmp18 * _tmp35 _pixel_D_point[1, 0] = -_tmp19 * _tmp36 * point[0, 0] + _tmp20 * _tmp35 _pixel_D_point[0, 1] = -_tmp17 * _tmp36 * point[1, 0] + _tmp18 * _tmp37 _pixel_D_point[1, 1] = -_self[1] * _tmp1 * _tmp36 + _self[1] * _tmp13 + _tmp20 * _tmp37 _pixel_D_point[0, 2] = _tmp17 * _tmp39 _pixel_D_point[1, 2] = _tmp19 * _tmp39 return _pixel, _is_valid, _pixel_D_cal, _pixel_D_point