Source code for sym.ops.spherical_camera_cal.camera_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     cam_package/ops/CLASS/camera_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

import math
import typing as T

import numpy

import sym


[docs]class CameraOps(object): """ Python CameraOps implementation for :py:class:`symforce.cam.spherical_camera_cal.SphericalCameraCal`. """
[docs] @staticmethod def focal_length(self): # type: (sym.SphericalCameraCal) -> numpy.ndarray """ Return the focal length. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _focal_length = numpy.zeros(2) _focal_length[0] = _self[0] _focal_length[1] = _self[1] return _focal_length
[docs] @staticmethod def principal_point(self): # type: (sym.SphericalCameraCal) -> numpy.ndarray """ Return the principal point. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _principal_point = numpy.zeros(2) _principal_point[0] = _self[2] _principal_point[1] = _self[3] return _principal_point
[docs] @staticmethod def pixel_from_camera_point(self, point, epsilon): # type: (sym.SphericalCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 """ # Total ops: 50 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (12) _tmp0 = point[0, 0] ** 2 _tmp1 = point[1, 0] ** 2 _tmp2 = _tmp0 + _tmp1 + epsilon _tmp3 = math.sqrt(_tmp2) _tmp4 = math.atan2(_tmp3, point[2, 0]) _tmp5 = min(_tmp4, _self[4] - epsilon) _tmp6 = ( _self[5] * _tmp5**3 + _self[6] * _tmp5**5 + _self[7] * _tmp5**7 + _self[8] * _tmp5**9 + _tmp5 ) _tmp7 = _tmp6**2 / _tmp2 _tmp8 = _self[10] * _tmp7 _tmp9 = 2 * point[0, 0] * point[1, 0] _tmp10 = _self[9] * _tmp7 _tmp11 = _tmp6 / _tmp3 # Output terms _pixel = numpy.zeros(2) _pixel[0] = ( _self[0] * (3 * _tmp0 * _tmp10 + _tmp1 * _tmp10 + _tmp11 * point[0, 0] + _tmp8 * _tmp9) + _self[2] ) _pixel[1] = ( _self[1] * (_tmp0 * _tmp8 + 3 * _tmp1 * _tmp8 + _tmp10 * _tmp9 + _tmp11 * point[1, 0]) + _self[3] ) _is_valid = max(0, (0.0 if _self[4] - _tmp4 == 0 else math.copysign(1, _self[4] - _tmp4))) return _pixel, _is_valid
[docs] @staticmethod def pixel_from_camera_point_with_jacobians(self, point, epsilon): # type: (sym.SphericalCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float, numpy.ndarray, numpy.ndarray] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 pixel_D_cal: Derivative of pixel with respect to intrinsic calibration parameters pixel_D_point: Derivative of pixel with respect to point """ # Total ops: 324 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (85) _tmp0 = point[0, 0] * point[1, 0] _tmp1 = point[0, 0] ** 2 _tmp2 = point[1, 0] ** 2 _tmp3 = _tmp1 + _tmp2 + epsilon _tmp4 = math.sqrt(_tmp3) _tmp5 = point[2, 0] _tmp6 = math.atan2(_tmp4, _tmp5) _tmp7 = -epsilon _tmp8 = min(_tmp6, _self[4] + _tmp7) _tmp9 = _tmp8**7 _tmp10 = _tmp8**3 _tmp11 = _tmp8**9 _tmp12 = _tmp8**5 _tmp13 = ( _self[5] * _tmp10 + _self[6] * _tmp12 + _self[7] * _tmp9 + _self[8] * _tmp11 + _tmp8 ) _tmp14 = _tmp13**2 _tmp15 = 1 / _tmp3 _tmp16 = _tmp14 * _tmp15 _tmp17 = 2 * _tmp16 _tmp18 = _tmp0 * _tmp17 _tmp19 = _tmp1 * _tmp16 _tmp20 = 3 * _tmp19 _tmp21 = _tmp16 * _tmp2 _tmp22 = 1 / _tmp4 _tmp23 = _tmp13 * _tmp22 _tmp24 = _self[10] * _tmp18 + _self[9] * _tmp20 + _self[9] * _tmp21 + _tmp23 * point[0, 0] _tmp25 = 3 * _tmp21 _tmp26 = _self[10] * _tmp19 + _self[10] * _tmp25 + _self[9] * _tmp18 + _tmp23 * point[1, 0] _tmp27 = _self[4] - _tmp6 _tmp28 = _tmp22 * point[0, 0] _tmp29 = _tmp13 * _tmp15 _tmp30 = 2 * _self[9] _tmp31 = _tmp2 * _tmp30 _tmp32 = _tmp29 * _tmp31 _tmp33 = 6 * _self[9] _tmp34 = _tmp1 * _tmp29 _tmp35 = _tmp33 * _tmp34 _tmp36 = 4 * _tmp0 _tmp37 = _tmp29 * _tmp36 _tmp38 = _tmp10 * _tmp37 _tmp39 = _tmp22 * point[1, 0] _tmp40 = 6 * _self[10] _tmp41 = _tmp2 * _tmp40 _tmp42 = _tmp29 * _tmp41 _tmp43 = 2 * _self[10] _tmp44 = _tmp34 * _tmp43 _tmp45 = _tmp12 * _tmp34 _tmp46 = _tmp12 * _tmp37 _tmp47 = _tmp34 * _tmp9 _tmp48 = _tmp37 * _tmp9 _tmp49 = _tmp11 * _tmp37 _tmp50 = _self[10] * point[1, 0] _tmp51 = _tmp14 / _tmp3**2 _tmp52 = 4 * _tmp51 _tmp53 = _tmp1 * _tmp52 _tmp54 = _self[9] * point[0, 0] _tmp55 = 6 * _tmp16 _tmp56 = _tmp51 * point[0, 0] ** 3 _tmp57 = ((0.0 if _tmp27 + _tmp7 == 0 else math.copysign(1, _tmp27 + _tmp7)) + 1) / ( _tmp3 + _tmp5**2 ) _tmp58 = _tmp5 * _tmp57 _tmp59 = (7.0 / 2.0) * _self[7] * _tmp8**6 _tmp60 = _tmp58 * _tmp59 _tmp61 = (5.0 / 2.0) * _self[6] * _tmp8**4 _tmp62 = _tmp58 * _tmp61 _tmp63 = (1.0 / 2.0) * _tmp58 _tmp64 = (9.0 / 2.0) * _self[8] * _tmp8**8 _tmp65 = _tmp58 * _tmp64 _tmp66 = (3.0 / 2.0) * _self[5] * _tmp8**2 _tmp67 = _tmp58 * _tmp66 _tmp68 = ( _tmp28 * _tmp60 + _tmp28 * _tmp62 + _tmp28 * _tmp63 + _tmp28 * _tmp65 + _tmp28 * _tmp67 ) _tmp69 = _tmp29 * _tmp68 _tmp70 = _self[10] * _tmp36 _tmp71 = _tmp13 / _tmp3 ** (3.0 / 2.0) _tmp72 = _self[9] * point[1, 0] _tmp73 = _self[9] * _tmp36 _tmp74 = _self[10] * point[0, 0] _tmp75 = -_tmp0 * _tmp71 + _tmp17 * _tmp72 + _tmp17 * _tmp74 _tmp76 = ( _tmp39 * _tmp60 + _tmp39 * _tmp62 + _tmp39 * _tmp63 + _tmp39 * _tmp65 + _tmp39 * _tmp67 ) _tmp77 = _tmp2 * _tmp52 _tmp78 = _tmp1 * _tmp51 _tmp79 = _tmp37 * _tmp76 _tmp80 = _tmp51 * point[1, 0] ** 3 _tmp81 = _tmp4 * _tmp57 _tmp82 = ( -_tmp59 * _tmp81 - _tmp61 * _tmp81 - _tmp64 * _tmp81 - _tmp66 * _tmp81 - 1.0 / 2.0 * _tmp81 ) _tmp83 = _tmp29 * _tmp82 _tmp84 = _tmp1 * _tmp83 # Output terms _pixel = numpy.zeros(2) _pixel[0] = _self[0] * _tmp24 + _self[2] _pixel[1] = _self[1] * _tmp26 + _self[3] _is_valid = max(0, (0.0 if _tmp27 == 0 else math.copysign(1, _tmp27))) _pixel_D_cal = numpy.zeros((2, 10)) _pixel_D_cal[0, 0] = _tmp24 _pixel_D_cal[1, 0] = 0 _pixel_D_cal[0, 1] = 0 _pixel_D_cal[1, 1] = _tmp26 _pixel_D_cal[0, 2] = 1 _pixel_D_cal[1, 2] = 0 _pixel_D_cal[0, 3] = 0 _pixel_D_cal[1, 3] = 1 _pixel_D_cal[0, 4] = _self[0] * ( _self[10] * _tmp38 + _tmp10 * _tmp28 + _tmp10 * _tmp32 + _tmp10 * _tmp35 ) _pixel_D_cal[1, 4] = _self[1] * ( _self[9] * _tmp38 + _tmp10 * _tmp39 + _tmp10 * _tmp42 + _tmp10 * _tmp44 ) _pixel_D_cal[0, 5] = _self[0] * ( _self[10] * _tmp46 + _tmp12 * _tmp28 + _tmp12 * _tmp32 + _tmp33 * _tmp45 ) _pixel_D_cal[1, 5] = _self[1] * ( _self[9] * _tmp46 + _tmp12 * _tmp39 + _tmp12 * _tmp42 + _tmp43 * _tmp45 ) _pixel_D_cal[0, 6] = _self[0] * ( _self[10] * _tmp48 + _tmp28 * _tmp9 + _tmp32 * _tmp9 + _tmp33 * _tmp47 ) _pixel_D_cal[1, 6] = _self[1] * ( _self[9] * _tmp48 + _tmp39 * _tmp9 + _tmp42 * _tmp9 + _tmp43 * _tmp47 ) _pixel_D_cal[0, 7] = _self[0] * ( _self[10] * _tmp49 + _tmp11 * _tmp28 + _tmp11 * _tmp32 + _tmp11 * _tmp35 ) _pixel_D_cal[1, 7] = _self[1] * ( _self[9] * _tmp49 + _tmp11 * _tmp39 + _tmp11 * _tmp42 + _tmp11 * _tmp44 ) _pixel_D_cal[0, 8] = _self[0] * (_tmp20 + _tmp21) _pixel_D_cal[1, 8] = _self[1] * _tmp18 _pixel_D_cal[0, 9] = _self[0] * _tmp18 _pixel_D_cal[1, 9] = _self[1] * (_tmp19 + _tmp25) _pixel_D_point = numpy.zeros((2, 3)) _pixel_D_point[0, 0] = _self[0] * ( -_tmp1 * _tmp71 + _tmp17 * _tmp50 - 2 * _tmp2 * _tmp51 * _tmp54 + _tmp23 + _tmp28 * _tmp68 + _tmp32 * _tmp68 - _tmp33 * _tmp56 + _tmp35 * _tmp68 - _tmp50 * _tmp53 + _tmp54 * _tmp55 + _tmp69 * _tmp70 ) _pixel_D_point[1, 0] = _self[1] * ( _tmp39 * _tmp68 - _tmp41 * _tmp51 * point[0, 0] + _tmp41 * _tmp69 - _tmp43 * _tmp56 + _tmp44 * _tmp68 - _tmp53 * _tmp72 + _tmp69 * _tmp73 + _tmp75 ) _pixel_D_point[0, 1] = _self[0] * ( _self[10] * _tmp79 + _tmp28 * _tmp76 - _tmp30 * _tmp80 + _tmp32 * _tmp76 - _tmp33 * _tmp78 * point[1, 0] + _tmp35 * _tmp76 - _tmp74 * _tmp77 + _tmp75 ) _pixel_D_point[1, 1] = _self[1] * ( _self[9] * _tmp79 + _tmp17 * _tmp54 - _tmp2 * _tmp71 + _tmp23 + _tmp39 * _tmp76 - _tmp40 * _tmp80 + _tmp42 * _tmp76 + _tmp44 * _tmp76 + _tmp50 * _tmp55 - 2 * _tmp50 * _tmp78 - _tmp54 * _tmp77 ) _pixel_D_point[0, 2] = _self[0] * ( _tmp28 * _tmp82 + _tmp31 * _tmp83 + _tmp33 * _tmp84 + _tmp70 * _tmp83 ) _pixel_D_point[1, 2] = _self[1] * ( _tmp39 * _tmp82 + _tmp41 * _tmp83 + _tmp43 * _tmp84 + _tmp73 * _tmp83 ) return _pixel, _is_valid, _pixel_D_cal, _pixel_D_point