Source code for sym.ops.spherical_camera_cal.camera_ops

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     cam_package/ops/CLASS/camera_ops.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

import math
import typing as T

import numpy

import sym  # pylint: disable=useless-suppression,unused-import


[docs]class CameraOps(object): """ Python CameraOps implementation for :py:class:`symforce.cam.spherical_camera_cal.SphericalCameraCal`. """
[docs] @staticmethod def focal_length(self): # type: (sym.SphericalCameraCal) -> numpy.ndarray """ Return the focal length. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _focal_length = numpy.zeros(2) _focal_length[0] = _self[0] _focal_length[1] = _self[1] return _focal_length
[docs] @staticmethod def principal_point(self): # type: (sym.SphericalCameraCal) -> numpy.ndarray """ Return the principal point. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _principal_point = numpy.zeros(2) _principal_point[0] = _self[2] _principal_point[1] = _self[3] return _principal_point
[docs] @staticmethod def pixel_from_camera_point(self, point, epsilon): # type: (sym.SphericalCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 """ # Total ops: 51 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (12) _tmp0 = point[1, 0] ** 2 _tmp1 = point[0, 0] ** 2 _tmp2 = _tmp0 + _tmp1 + epsilon _tmp3 = math.sqrt(_tmp2) _tmp4 = math.atan2(_tmp3, point[2, 0]) _tmp5 = min(_tmp4, _self[4] - epsilon) _tmp6 = ( _self[5] * _tmp5**3 + _self[6] * _tmp5**5 + _self[7] * _tmp5**7 + _self[8] * _tmp5**9 + _tmp5 ) _tmp7 = _tmp6 / _tmp3 _tmp8 = _tmp6**2 / _tmp2 _tmp9 = 2 * _tmp8 * point[0, 0] * point[1, 0] _tmp10 = _tmp0 * _tmp8 _tmp11 = _tmp1 * _tmp8 # Output terms _pixel = numpy.zeros(2) _pixel[0] = ( _self[0] * (_self[10] * _tmp9 + _self[9] * _tmp10 + 3 * _self[9] * _tmp11 + _tmp7 * point[0, 0]) + _self[2] ) _pixel[1] = ( _self[1] * (3 * _self[10] * _tmp10 + _self[10] * _tmp11 + _self[9] * _tmp9 + _tmp7 * point[1, 0]) + _self[3] ) _is_valid = max(0, (0.0 if _self[4] - _tmp4 == 0 else math.copysign(1, _self[4] - _tmp4))) return _pixel, _is_valid
[docs] @staticmethod def pixel_from_camera_point_with_jacobians(self, point, epsilon): # type: (sym.SphericalCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float, numpy.ndarray, numpy.ndarray] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 pixel_D_cal: Derivative of pixel with respect to intrinsic calibration parameters pixel_D_point: Derivative of pixel with respect to point """ # Total ops: 321 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (79) _tmp0 = -epsilon _tmp1 = point[1, 0] ** 2 _tmp2 = point[0, 0] ** 2 _tmp3 = _tmp1 + _tmp2 + epsilon _tmp4 = math.sqrt(_tmp3) _tmp5 = math.atan2(_tmp4, point[2, 0]) _tmp6 = min(_tmp5, _self[4] + _tmp0) _tmp7 = _tmp6**5 _tmp8 = _tmp6**7 _tmp9 = _tmp6**9 _tmp10 = _tmp6**3 _tmp11 = _self[5] * _tmp10 + _self[6] * _tmp7 + _self[7] * _tmp8 + _self[8] * _tmp9 + _tmp6 _tmp12 = 1 / _tmp4 _tmp13 = _tmp11 * _tmp12 _tmp14 = point[0, 0] * point[1, 0] _tmp15 = _tmp11**2 _tmp16 = 1 / _tmp3 _tmp17 = _tmp15 * _tmp16 _tmp18 = 2 * _self[10] _tmp19 = _tmp17 * _tmp18 _tmp20 = _tmp1 * _tmp17 _tmp21 = _tmp17 * _tmp2 _tmp22 = 3 * _tmp21 _tmp23 = _self[9] * _tmp20 + _self[9] * _tmp22 + _tmp13 * point[0, 0] + _tmp14 * _tmp19 _tmp24 = 2 * _tmp17 _tmp25 = _tmp14 * _tmp24 _tmp26 = 3 * _tmp20 _tmp27 = _self[10] * _tmp21 + _self[10] * _tmp26 + _self[9] * _tmp25 + _tmp13 * point[1, 0] _tmp28 = _self[4] - _tmp5 _tmp29 = _tmp11 * _tmp16 _tmp30 = 6 * _self[9] _tmp31 = _tmp2 * _tmp30 _tmp32 = _tmp29 * _tmp31 _tmp33 = 4 * _tmp14 _tmp34 = _self[10] * _tmp33 _tmp35 = _tmp29 * _tmp34 _tmp36 = 2 * _self[9] _tmp37 = _tmp1 * _tmp36 _tmp38 = _tmp29 * _tmp37 _tmp39 = _tmp12 * point[0, 0] _tmp40 = _tmp18 * _tmp2 _tmp41 = _tmp29 * _tmp40 _tmp42 = _self[9] * _tmp33 _tmp43 = _tmp29 * _tmp42 _tmp44 = 6 * _self[10] _tmp45 = _tmp1 * _tmp44 _tmp46 = _tmp29 * _tmp45 _tmp47 = _tmp12 * point[1, 0] _tmp48 = _tmp29 * _tmp9 _tmp49 = _tmp11 / _tmp3 ** (3.0 / 2.0) _tmp50 = _tmp15 / _tmp3**2 _tmp51 = _self[9] * point[0, 0] _tmp52 = _self[10] * point[1, 0] _tmp53 = 4 * _tmp50 _tmp54 = _tmp2 * _tmp53 _tmp55 = 6 * _tmp17 _tmp56 = _tmp50 * point[0, 0] ** 3 _tmp57 = (9.0 / 2.0) * _self[8] * _tmp6**8 _tmp58 = ((0.0 if _tmp0 + _tmp28 == 0 else math.copysign(1, _tmp0 + _tmp28)) + 1) / ( _tmp3 + point[2, 0] ** 2 ) _tmp59 = _tmp58 * point[2, 0] _tmp60 = _tmp57 * _tmp59 _tmp61 = (5.0 / 2.0) * _self[6] * _tmp6**4 _tmp62 = _tmp59 * _tmp61 _tmp63 = (7.0 / 2.0) * _self[7] * _tmp6**6 _tmp64 = _tmp59 * _tmp63 _tmp65 = (3.0 / 2.0) * _self[5] * _tmp6**2 _tmp66 = _tmp59 * _tmp65 _tmp67 = (1.0 / 2.0) * _tmp59 _tmp68 = ( _tmp39 * _tmp60 + _tmp39 * _tmp62 + _tmp39 * _tmp64 + _tmp39 * _tmp66 + _tmp39 * _tmp67 ) _tmp69 = _tmp29 * _tmp68 _tmp70 = _self[9] * point[1, 0] _tmp71 = -_tmp14 * _tmp49 + _tmp19 * point[0, 0] + _tmp24 * _tmp70 _tmp72 = _tmp1 * _tmp53 _tmp73 = _tmp50 * point[1, 0] ** 3 _tmp74 = ( _tmp47 * _tmp60 + _tmp47 * _tmp62 + _tmp47 * _tmp64 + _tmp47 * _tmp66 + _tmp47 * _tmp67 ) _tmp75 = _tmp29 * _tmp74 _tmp76 = _tmp4 * _tmp58 _tmp77 = ( -_tmp57 * _tmp76 - _tmp61 * _tmp76 - _tmp63 * _tmp76 - _tmp65 * _tmp76 - 1.0 / 2.0 * _tmp76 ) _tmp78 = _tmp29 * _tmp77 # Output terms _pixel = numpy.zeros(2) _pixel[0] = _self[0] * _tmp23 + _self[2] _pixel[1] = _self[1] * _tmp27 + _self[3] _is_valid = max(0, (0.0 if _tmp28 == 0 else math.copysign(1, _tmp28))) _pixel_D_cal = numpy.zeros((2, 10)) _pixel_D_cal[0, 0] = _tmp23 _pixel_D_cal[1, 0] = 0 _pixel_D_cal[0, 1] = 0 _pixel_D_cal[1, 1] = _tmp27 _pixel_D_cal[0, 2] = 1 _pixel_D_cal[1, 2] = 0 _pixel_D_cal[0, 3] = 0 _pixel_D_cal[1, 3] = 1 _pixel_D_cal[0, 4] = _self[0] * ( _tmp10 * _tmp32 + _tmp10 * _tmp35 + _tmp10 * _tmp38 + _tmp10 * _tmp39 ) _pixel_D_cal[1, 4] = _self[1] * ( _tmp10 * _tmp41 + _tmp10 * _tmp43 + _tmp10 * _tmp46 + _tmp10 * _tmp47 ) _pixel_D_cal[0, 5] = _self[0] * ( _tmp32 * _tmp7 + _tmp35 * _tmp7 + _tmp38 * _tmp7 + _tmp39 * _tmp7 ) _pixel_D_cal[1, 5] = _self[1] * ( _tmp41 * _tmp7 + _tmp43 * _tmp7 + _tmp46 * _tmp7 + _tmp47 * _tmp7 ) _pixel_D_cal[0, 6] = _self[0] * ( _tmp32 * _tmp8 + _tmp35 * _tmp8 + _tmp38 * _tmp8 + _tmp39 * _tmp8 ) _pixel_D_cal[1, 6] = _self[1] * ( _tmp41 * _tmp8 + _tmp43 * _tmp8 + _tmp46 * _tmp8 + _tmp47 * _tmp8 ) _pixel_D_cal[0, 7] = _self[0] * ( _tmp31 * _tmp48 + _tmp34 * _tmp48 + _tmp37 * _tmp48 + _tmp39 * _tmp9 ) _pixel_D_cal[1, 7] = _self[1] * ( _tmp40 * _tmp48 + _tmp42 * _tmp48 + _tmp45 * _tmp48 + _tmp47 * _tmp9 ) _pixel_D_cal[0, 8] = _self[0] * (_tmp20 + _tmp22) _pixel_D_cal[1, 8] = _self[1] * _tmp25 _pixel_D_cal[0, 9] = _self[0] * _tmp25 _pixel_D_cal[1, 9] = _self[1] * (_tmp21 + _tmp26) _pixel_D_point = numpy.zeros((2, 3)) _pixel_D_point[0, 0] = _self[0] * ( -2 * _tmp1 * _tmp50 * _tmp51 + _tmp13 + _tmp19 * point[1, 0] - _tmp2 * _tmp49 - _tmp30 * _tmp56 + _tmp32 * _tmp68 + _tmp34 * _tmp69 + _tmp37 * _tmp69 + _tmp39 * _tmp68 + _tmp51 * _tmp55 - _tmp52 * _tmp54 ) _pixel_D_point[1, 0] = _self[1] * ( -_tmp18 * _tmp56 + _tmp40 * _tmp69 + _tmp42 * _tmp69 - _tmp45 * _tmp50 * point[0, 0] + _tmp46 * _tmp68 + _tmp47 * _tmp68 - _tmp54 * _tmp70 + _tmp71 ) _pixel_D_point[0, 1] = _self[0] * ( -_self[10] * _tmp72 * point[0, 0] - 6 * _tmp2 * _tmp50 * _tmp70 + _tmp32 * _tmp74 + _tmp34 * _tmp75 - _tmp36 * _tmp73 + _tmp38 * _tmp74 + _tmp39 * _tmp74 + _tmp71 ) _pixel_D_point[1, 1] = _self[1] * ( -_tmp1 * _tmp49 + _tmp13 + _tmp24 * _tmp51 - _tmp40 * _tmp50 * point[1, 0] + _tmp41 * _tmp74 + _tmp42 * _tmp75 - _tmp44 * _tmp73 + _tmp46 * _tmp74 + _tmp47 * _tmp74 - _tmp51 * _tmp72 + _tmp52 * _tmp55 ) _pixel_D_point[0, 2] = _self[0] * ( _tmp31 * _tmp78 + _tmp34 * _tmp78 + _tmp37 * _tmp78 + _tmp39 * _tmp77 ) _pixel_D_point[1, 2] = _self[1] * ( _tmp40 * _tmp78 + _tmp42 * _tmp78 + _tmp45 * _tmp78 + _tmp47 * _tmp77 ) return _pixel, _is_valid, _pixel_D_cal, _pixel_D_point