Source code for sym.orthographic_camera_cal

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     cam_package/CLASS.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------

import typing as T

import numpy

from .ops import orthographic_camera_cal as ops


[docs]class OrthographicCameraCal(object): """ Autogenerated Python implementation of :py:class:`symforce.cam.orthographic_camera_cal.OrthographicCameraCal`. Orthographic camera model with four parameters [fx, fy, cx, cy]. It would be possible to define orthographic cameras with only two parameters [fx, fy] but we keep the [cx, cy] parameters for consistency with the CameraCal interface. The orthographic camera model can be thought of as a special case of the LinearCameraCal model, where (x,y,z) in the camera frame projects to pixel (x * fx + cx, y * fy + cy). The z-coordinate of the point is ignored in the projection, except that only points with positive z-coordinates are considered valid. Because this is a noncentral camera model, the camera_ray_from_pixel function is not implemented. """ __slots__ = ["data"] # This is because of an issue where mypy doesn't recognize attributes defined in __slots__ # See https://github.com/python/mypy/issues/5941 if T.TYPE_CHECKING: data = [] # type: T.List[float] def __init__(self, focal_length, principal_point): # type: (T.Union[T.Sequence[float], numpy.ndarray], T.Union[T.Sequence[float], numpy.ndarray]) -> None self.data = [] if isinstance(focal_length, numpy.ndarray): if focal_length.shape in {(2, 1), (1, 2)}: focal_length = focal_length.flatten() elif focal_length.shape != (2,): raise IndexError( "Expected focal_length to be a vector of length 2; instead had shape {}".format( focal_length.shape ) ) elif len(focal_length) != 2: raise IndexError( "Expected focal_length to be a sequence of length 2, was instead length {}.".format( len(focal_length) ) ) if isinstance(principal_point, numpy.ndarray): if principal_point.shape in {(2, 1), (1, 2)}: principal_point = principal_point.flatten() elif principal_point.shape != (2,): raise IndexError( "Expected principal_point to be a vector of length 2; instead had shape {}".format( principal_point.shape ) ) elif len(principal_point) != 2: raise IndexError( "Expected principal_point to be a sequence of length 2, was instead length {}.".format( len(principal_point) ) ) self.data.extend(focal_length) self.data.extend(principal_point) def __repr__(self): # type: () -> str return "<{} {}>".format(self.__class__.__name__, self.data) # -------------------------------------------------------------------------- # CameraOps # --------------------------------------------------------------------------
[docs] def focal_length(self): # type: (OrthographicCameraCal) -> numpy.ndarray """ Return the focal length. """ return ops.CameraOps.focal_length(self)
[docs] def principal_point(self): # type: (OrthographicCameraCal) -> numpy.ndarray """ Return the principal point. """ return ops.CameraOps.principal_point(self)
[docs] def pixel_from_camera_point(self, point, epsilon): # type: (OrthographicCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 """ return ops.CameraOps.pixel_from_camera_point(self, point, epsilon)
[docs] def pixel_from_camera_point_with_jacobians(self, point, epsilon): # type: (OrthographicCameraCal, numpy.ndarray, float) -> T.Tuple[numpy.ndarray, float, numpy.ndarray, numpy.ndarray] """ Project a 3D point in the camera frame into 2D pixel coordinates. Returns: pixel: (x, y) coordinate in pixels if valid is_valid: 1 if the operation is within bounds else 0 pixel_D_cal: Derivative of pixel with respect to intrinsic calibration parameters pixel_D_point: Derivative of pixel with respect to point """ return ops.CameraOps.pixel_from_camera_point_with_jacobians(self, point, epsilon)
# -------------------------------------------------------------------------- # StorageOps concept # --------------------------------------------------------------------------
[docs] @staticmethod def storage_dim(): # type: () -> int return 4
[docs] def to_storage(self): # type: () -> T.List[float] return list(self.data)
[docs] @classmethod def from_storage(cls, vec): # type: (T.Sequence[float]) -> OrthographicCameraCal instance = cls.__new__(cls) if isinstance(vec, list): instance.data = vec else: instance.data = list(vec) if len(vec) != cls.storage_dim(): raise ValueError( "{} has storage dim {}, got {}.".format(cls.__name__, cls.storage_dim(), len(vec)) ) return instance
# -------------------------------------------------------------------------- # LieGroupOps concept # --------------------------------------------------------------------------
[docs] @staticmethod def tangent_dim(): # type: () -> int return 4
[docs] @classmethod def from_tangent(cls, vec, epsilon=1e-8): # type: (numpy.ndarray, float) -> OrthographicCameraCal if len(vec) != cls.tangent_dim(): raise ValueError( "Vector dimension ({}) not equal to tangent space dimension ({}).".format( len(vec), cls.tangent_dim() ) ) return ops.LieGroupOps.from_tangent(vec, epsilon)
[docs] def to_tangent(self, epsilon=1e-8): # type: (float) -> numpy.ndarray return ops.LieGroupOps.to_tangent(self, epsilon)
[docs] def retract(self, vec, epsilon=1e-8): # type: (numpy.ndarray, float) -> OrthographicCameraCal if len(vec) != self.tangent_dim(): raise ValueError( "Vector dimension ({}) not equal to tangent space dimension ({}).".format( len(vec), self.tangent_dim() ) ) return ops.LieGroupOps.retract(self, vec, epsilon)
[docs] def local_coordinates(self, b, epsilon=1e-8): # type: (OrthographicCameraCal, float) -> numpy.ndarray return ops.LieGroupOps.local_coordinates(self, b, epsilon)
[docs] def interpolate(self, b, alpha, epsilon=1e-8): # type: (OrthographicCameraCal, float, float) -> OrthographicCameraCal return ops.LieGroupOps.interpolate(self, b, alpha, epsilon)
# -------------------------------------------------------------------------- # General Helpers # -------------------------------------------------------------------------- def __eq__(self, other): # type: (T.Any) -> bool if isinstance(other, OrthographicCameraCal): return self.data == other.data else: return False