Source code for sym.pose3

# -----------------------------------------------------------------------------
# This file was autogenerated by symforce from template:
#     geo_package/CLASS.py.jinja
# Do NOT modify by hand.
# -----------------------------------------------------------------------------


# ruff: noqa: PLR0915, F401, PLW0211, PLR0914

import math
import random
import typing as T

import numpy

from .rot3 import Rot3

# isort: split
from .ops import pose3 as ops


[docs]class Pose3(object): """ Autogenerated Python implementation of :py:class:`symforce.geo.pose3.Pose3`. Group of three-dimensional rigid body transformations - SO(3) x R3. The storage is a quaternion (x, y, z, w) for rotation followed by position (x, y, z). The tangent space is 3 elements for rotation followed by 3 elements for translation in the non-rotated frame. For Lie group enthusiasts: This class is on the PRODUCT manifold. On this class, the group operations (e.g. compose and between) operate as you'd expect for a Pose or SE(3), but the manifold operations (e.g. retract and local_coordinates) operate on the product manifold SO(3) x R3. This means that: - retract(a, vec) != compose(a, from_tangent(vec)) - local_coordinates(a, b) != to_tangent(between(a, b)) - There is no hat operator, because from_tangent/to_tangent is not the matrix exp/log If you need a type that has these properties in symbolic expressions, you should use :class:`symforce.geo.unsupported.pose3_se3.Pose3_SE3`. There is no runtime equivalent of :class:`Pose3_SE3 <symforce.geo.unsupported.pose3_se3.Pose3_SE3>`, see the docstring on that class for more information. """ __slots__ = ["data"] def __repr__(self): # type: () -> str return "<{} {}>".format(self.__class__.__name__, self.data) # -------------------------------------------------------------------------- # Handwritten methods included from "custom_methods/pose3.py.jinja" # -------------------------------------------------------------------------- def __init__(self, R=None, t=None): # type: (T.Optional[Rot3], T.Union[T.Sequence[float], numpy.ndarray, None]) -> None rotation = R if R is not None else Rot3() if t is None: t = [0.0, 0.0, 0.0] if isinstance(t, numpy.ndarray): if t.shape in {(3, 1), (1, 3)}: t = t.flatten() elif t.shape != (3,): raise IndexError( "Expected t to be a vector of length 3; instead had shape {}".format(t.shape) ) elif len(t) != 3: raise IndexError( "Expected t to be a sequence of length 3, was instead length {}.".format(len(t)) ) if not isinstance(rotation, Rot3): raise ValueError("arg R has type {}; type {} expected".format(type(R), Rot3)) self.data = rotation.to_storage() + list(t) @property def R(self): # type: () -> Rot3 """ Accessor for the rotation component, equivalent to self.rotation() """ return self.rotation() @property def t(self): # type: () -> numpy.ndarray """ Accessor for the position component, equivalent to self.position() """ return self.position()
[docs] def rotation(self): # type: () -> Rot3 return Rot3.from_storage(list(self.rotation_storage()))
# -------------------------------------------------------------------------- # Custom generated methods # --------------------------------------------------------------------------
[docs] def rotation_storage(self): # type: (Pose3) -> numpy.ndarray """ Returns the rotational component of this pose. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _res = numpy.zeros(4) _res[0] = _self[0] _res[1] = _self[1] _res[2] = _self[2] _res[3] = _self[3] return _res
[docs] def position(self): # type: (Pose3) -> numpy.ndarray """ Returns the positional component of this pose. """ # Total ops: 0 # Input arrays _self = self.data # Intermediate terms (0) # Output terms _res = numpy.zeros(3) _res[0] = _self[4] _res[1] = _self[5] _res[2] = _self[6] return _res
[docs] def compose_with_point(self, right): # type: (Pose3, numpy.ndarray) -> numpy.ndarray """ Left-multiply with a compatible quantity. """ # Total ops: 46 # Input arrays _self = self.data if right.shape == (3,): right = right.reshape((3, 1)) elif right.shape != (3, 1): raise IndexError( "right is expected to have shape (3, 1) or (3,); instead had shape {}".format( right.shape ) ) # Intermediate terms (11) _tmp0 = 2 * _self[2] * _self[3] _tmp1 = 2 * _self[1] _tmp2 = _self[0] * _tmp1 _tmp3 = -2 * _self[1] ** 2 _tmp4 = 1 - 2 * _self[2] ** 2 _tmp5 = 2 * _self[0] _tmp6 = _self[2] * _tmp5 _tmp7 = _self[3] * _tmp1 _tmp8 = -2 * _self[0] ** 2 _tmp9 = _self[3] * _tmp5 _tmp10 = _self[2] * _tmp1 # Output terms _res = numpy.zeros(3) _res[0] = ( _self[4] + right[0, 0] * (_tmp3 + _tmp4) + right[1, 0] * (-_tmp0 + _tmp2) + right[2, 0] * (_tmp6 + _tmp7) ) _res[1] = ( _self[5] + right[0, 0] * (_tmp0 + _tmp2) + right[1, 0] * (_tmp4 + _tmp8) + right[2, 0] * (_tmp10 - _tmp9) ) _res[2] = ( _self[6] + right[0, 0] * (_tmp6 - _tmp7) + right[1, 0] * (_tmp10 + _tmp9) + right[2, 0] * (_tmp3 + _tmp8 + 1) ) return _res
[docs] def inverse_compose(self, point): # type: (Pose3, numpy.ndarray) -> numpy.ndarray """ Returns ``self.inverse() * point`` This is more efficient than calling the generated inverse and compose methods separately, if doing this for one point. """ # Total ops: 61 # Input arrays _self = self.data if point.shape == (3,): point = point.reshape((3, 1)) elif point.shape != (3, 1): raise IndexError( "point is expected to have shape (3, 1) or (3,); instead had shape {}".format( point.shape ) ) # Intermediate terms (20) _tmp0 = -2 * _self[1] ** 2 _tmp1 = 1 - 2 * _self[2] ** 2 _tmp2 = _tmp0 + _tmp1 _tmp3 = 2 * _self[2] _tmp4 = _self[0] * _tmp3 _tmp5 = 2 * _self[3] _tmp6 = _self[1] * _tmp5 _tmp7 = _tmp4 - _tmp6 _tmp8 = _self[3] * _tmp3 _tmp9 = 2 * _self[0] * _self[1] _tmp10 = _tmp8 + _tmp9 _tmp11 = -2 * _self[0] ** 2 _tmp12 = _tmp1 + _tmp11 _tmp13 = _self[0] * _tmp5 _tmp14 = _self[1] * _tmp3 _tmp15 = _tmp13 + _tmp14 _tmp16 = -_tmp8 + _tmp9 _tmp17 = _tmp0 + _tmp11 + 1 _tmp18 = _tmp4 + _tmp6 _tmp19 = -_tmp13 + _tmp14 # Output terms _res = numpy.zeros(3) _res[0] = ( -_self[4] * _tmp2 - _self[5] * _tmp10 - _self[6] * _tmp7 + _tmp10 * point[1, 0] + _tmp2 * point[0, 0] + _tmp7 * point[2, 0] ) _res[1] = ( -_self[4] * _tmp16 - _self[5] * _tmp12 - _self[6] * _tmp15 + _tmp12 * point[1, 0] + _tmp15 * point[2, 0] + _tmp16 * point[0, 0] ) _res[2] = ( -_self[4] * _tmp18 - _self[5] * _tmp19 - _self[6] * _tmp17 + _tmp17 * point[2, 0] + _tmp18 * point[0, 0] + _tmp19 * point[1, 0] ) return _res
[docs] def to_homogenous_matrix(self): # type: (Pose3) -> numpy.ndarray """ 4x4 matrix representing this pose transform. """ # Total ops: 28 # Input arrays _self = self.data # Intermediate terms (11) _tmp0 = -2 * _self[1] ** 2 _tmp1 = 1 - 2 * _self[2] ** 2 _tmp2 = 2 * _self[2] * _self[3] _tmp3 = 2 * _self[1] _tmp4 = _self[0] * _tmp3 _tmp5 = 2 * _self[0] _tmp6 = _self[2] * _tmp5 _tmp7 = _self[3] * _tmp3 _tmp8 = -2 * _self[0] ** 2 _tmp9 = _self[3] * _tmp5 _tmp10 = _self[2] * _tmp3 # Output terms _res = numpy.zeros((4, 4)) _res[0, 0] = _tmp0 + _tmp1 _res[1, 0] = _tmp2 + _tmp4 _res[2, 0] = _tmp6 - _tmp7 _res[3, 0] = 0 _res[0, 1] = -_tmp2 + _tmp4 _res[1, 1] = _tmp1 + _tmp8 _res[2, 1] = _tmp10 + _tmp9 _res[3, 1] = 0 _res[0, 2] = _tmp6 + _tmp7 _res[1, 2] = _tmp10 - _tmp9 _res[2, 2] = _tmp0 + _tmp8 + 1 _res[3, 2] = 0 _res[0, 3] = _self[4] _res[1, 3] = _self[5] _res[2, 3] = _self[6] _res[3, 3] = 1 return _res
# -------------------------------------------------------------------------- # StorageOps concept # --------------------------------------------------------------------------
[docs] @staticmethod def storage_dim(): # type: () -> int return 7
[docs] def to_storage(self): # type: () -> T.List[float] return list(self.data)
[docs] @classmethod def from_storage(cls, vec): # type: (T.Sequence[float]) -> Pose3 instance = cls.__new__(cls) if isinstance(vec, list): instance.data = vec else: instance.data = list(vec) if len(vec) != cls.storage_dim(): raise ValueError( "{} has storage dim {}, got {}.".format(cls.__name__, cls.storage_dim(), len(vec)) ) return instance
# -------------------------------------------------------------------------- # GroupOps concept # --------------------------------------------------------------------------
[docs] @classmethod def identity(cls): # type: () -> Pose3 return ops.GroupOps.identity()
[docs] def inverse(self): # type: () -> Pose3 return ops.GroupOps.inverse(self)
[docs] def compose(self, b): # type: (Pose3) -> Pose3 return ops.GroupOps.compose(self, b)
[docs] def between(self, b): # type: (Pose3) -> Pose3 return ops.GroupOps.between(self, b)
# -------------------------------------------------------------------------- # LieGroupOps concept # --------------------------------------------------------------------------
[docs] @staticmethod def tangent_dim(): # type: () -> int return 6
[docs] @classmethod def from_tangent(cls, vec, epsilon=1e-8): # type: (numpy.ndarray, float) -> Pose3 if len(vec) != cls.tangent_dim(): raise ValueError( "Vector dimension ({}) not equal to tangent space dimension ({}).".format( len(vec), cls.tangent_dim() ) ) return ops.LieGroupOps.from_tangent(vec, epsilon)
[docs] def to_tangent(self, epsilon=1e-8): # type: (float) -> numpy.ndarray return ops.LieGroupOps.to_tangent(self, epsilon)
[docs] def retract(self, vec, epsilon=1e-8): # type: (numpy.ndarray, float) -> Pose3 if len(vec) != self.tangent_dim(): raise ValueError( "Vector dimension ({}) not equal to tangent space dimension ({}).".format( len(vec), self.tangent_dim() ) ) return ops.LieGroupOps.retract(self, vec, epsilon)
[docs] def local_coordinates(self, b, epsilon=1e-8): # type: (Pose3, float) -> numpy.ndarray return ops.LieGroupOps.local_coordinates(self, b, epsilon)
[docs] def interpolate(self, b, alpha, epsilon=1e-8): # type: (Pose3, float, float) -> Pose3 return ops.LieGroupOps.interpolate(self, b, alpha, epsilon)
# -------------------------------------------------------------------------- # General Helpers # -------------------------------------------------------------------------- def __eq__(self, other): # type: (T.Any) -> bool if isinstance(other, Pose3): return self.data == other.data else: return False @T.overload def __mul__(self, other): # pragma: no cover # type: (Pose3) -> Pose3 pass @T.overload def __mul__(self, other): # pragma: no cover # type: (numpy.ndarray) -> numpy.ndarray pass def __mul__(self, other): # type: (T.Union[Pose3, numpy.ndarray]) -> T.Union[Pose3, numpy.ndarray] if isinstance(other, Pose3): return self.compose(other) elif isinstance(other, numpy.ndarray) and hasattr(self, "compose_with_point"): return self.compose_with_point(other).reshape(other.shape) else: raise NotImplementedError("Cannot compose {} with {}.".format(type(self), type(other)))