Source code for symforce.cam.polynomial_camera_cal

# ----------------------------------------------------------------------------
# SymForce - Copyright 2022, Skydio, Inc.
# This source code is under the Apache 2.0 license found in the LICENSE file.
# ----------------------------------------------------------------------------

from __future__ import annotations

import math

import symforce.internal.symbolic as sf
from symforce import geo
from symforce import typing as T
from symforce.cam.camera_util import compute_odd_polynomial_critical_point
from symforce.cam.linear_camera_cal import LinearCameraCal

from .camera_cal import CameraCal


[docs]class PolynomialCameraCal(CameraCal): """ Polynomial camera model in the style of OpenCV Distortion is a multiplicative factor applied to the image plane coordinates in the camera frame. Mapping between distorted image plane coordinates and image coordinates is done using a standard linear model. The distortion function is a 6th order even polynomial that is a function of the radius of the image plane coordinates:: r = (p_img[0] ** 2 + p_img[1] ** 2) ** 0.5 distorted_weight = 1 + c0 * r^2 + c1 * r^4 + c2 * r^6 uv = p_img * distorted_weight """ NUM_DISTORTION_COEFFS = 3 DEFAULT_MAX_FOV = math.radians(120) def __init__( self, focal_length: T.Sequence[T.Scalar], principal_point: T.Sequence[T.Scalar], distortion_coeffs: T.Sequence[T.Scalar] = (0.0, 0.0, 0.0), critical_undistorted_radius: T.Optional[T.Scalar] = None, max_fov: T.Scalar = DEFAULT_MAX_FOV, ) -> None: """ Args: critical_undistorted_radius: The maximum radius allowable for distortion. This should be as large as largest expected undistorted radius. If the distortion coeffs are all numerical, this will be computed automatically as either the first local maximum of r(radius) in the interval (0, max_radius), or as max_radius if there is no local maximum in the interval. max_fov: Only used to compute critical_undistorted_radius when all camera parameters are numerical. The maximum FOV (field of view) determines the maximum image plane coordinates which is used to compute maximum radius. """ super().__init__(focal_length, principal_point, distortion_coeffs) if critical_undistorted_radius is not None: self.critical_undistorted_radius = critical_undistorted_radius elif any( isinstance(c, sf.Expr) and not isinstance(c, sf.Number) for c in distortion_coeffs ): raise ValueError( "critical_undistorted_radius must be provided if the distortion_coeffs are not all numerical" ) else: self.critical_undistorted_radius = self._compute_critical_undistorted_radius(max_fov)
[docs] @classmethod def from_distortion_coeffs( cls, focal_length: T.Sequence[T.Scalar], principal_point: T.Sequence[T.Scalar], distortion_coeffs: T.Sequence[T.Scalar] = tuple(), **kwargs: T.Scalar, ) -> PolynomialCameraCal: """ Construct a Camera Cal of type cls from the focal_length, principal_point, and distortion_coeffs. kwargs are additional arguments which will be passed to the constructor. Symbolic arguments may only be passed if the kwarg critical_undistorted_radius is passed. """ return cls( focal_length=focal_length, principal_point=principal_point, distortion_coeffs=distortion_coeffs, **kwargs, )
[docs] @classmethod def storage_order(cls) -> T.Tuple[T.Tuple[str, int], ...]: return ( ("focal_length", 2), ("principal_point", 2), ("critical_undistorted_radius", 1), ("distortion_coeffs", cls.NUM_DISTORTION_COEFFS), )
def _distortion_weight(self, undistorted_radius: T.Scalar) -> T.Scalar: """ Compute the distortion weight for the given undistorted radius. This weight is applied to the image plane coordinates. """ total = 1.0 radius_term = 1.0 for coef in self.distortion_coeffs.to_flat_list(): radius_term *= undistorted_radius**2 total += radius_term * coef return total
[docs] def pixel_from_camera_point( self, point: geo.Matrix31, epsilon: T.Scalar = sf.epsilon() ) -> T.Tuple[geo.Matrix21, T.Scalar]: p_img, project_is_valid = LinearCameraCal.project(point, epsilon) undistorted_radius = p_img.norm(epsilon) distortion_is_valid = sf.is_positive(self.critical_undistorted_radius - undistorted_radius) distorted_p_img = p_img * self._distortion_weight(undistorted_radius) linear_camera_cal = LinearCameraCal( self.focal_length.to_flat_list(), self.principal_point.to_flat_list() ) uv = linear_camera_cal.pixel_from_unit_depth(distorted_p_img) is_valid = sf.logical_and(project_is_valid, distortion_is_valid, unsafe=True) return uv, is_valid
[docs] def camera_ray_from_pixel( self, pixel: geo.Matrix21, epsilon: float = 0 ) -> T.Tuple[geo.Matrix31, T.Scalar]: raise NotImplementedError( "Back projection involves computing the inverse of a polynomial function" )
def _compute_critical_undistorted_radius(self, max_fov: float) -> float: """ Compute the critical_undistorted_radius for the given (numerical) distortion_coeffs and max_fov. The max_fov is used as a bound for the max critical radius. """ # The maximum radius in the image plane given the maximum expected FOV of the camera. # FOV is symmetric. max_radius = math.tan(max_fov / 2) return compute_odd_polynomial_critical_point( self.distortion_coeffs.to_flat_list(), max_radius ) # ------------------------------------------------------------------------- # Storage concept - see symforce.ops.storage_ops # -------------------------------------------------------------------------
[docs] @classmethod def storage_dim(cls) -> int: # Contains the standard intrinsics, plus the critical_undistorted_radius return 4 + 1 + cls.NUM_DISTORTION_COEFFS
[docs] def to_storage(self) -> T.List[T.Scalar]: return ( self.focal_length.to_storage() + self.principal_point.to_storage() + [self.critical_undistorted_radius] + self.distortion_coeffs.to_storage() )
[docs] @classmethod def from_storage(cls, vec: T.Sequence[T.Scalar]) -> PolynomialCameraCal: assert len(vec) == cls.storage_dim() return cls( focal_length=vec[0:2], principal_point=vec[2:4], critical_undistorted_radius=vec[4], distortion_coeffs=vec[5:], )
[docs] @classmethod def symbolic(cls, name: str, **kwargs: T.Any) -> PolynomialCameraCal: with sf.scope(name): return cls( focal_length=sf.symbols("f_x f_y"), principal_point=sf.symbols("c_x c_y"), critical_undistorted_radius=sf.Symbol("radius_crit"), distortion_coeffs=geo.Matrix(cls.NUM_DISTORTION_COEFFS, 1) .symbolic("C", **kwargs) .to_flat_list(), )
def __repr__(self) -> str: return "<{}\n focal_length={},\n principal_point={},\n critical_undistorted_radius={},\n distortion_coeffs={}>".format( self.__class__.__name__, self.focal_length.to_storage(), self.principal_point.to_storage(), self.critical_undistorted_radius, self.distortion_coeffs.to_storage(), )